Ylide Dications: An Examination of First- and Second-Row Systems ${ }^{1}$

Brian F. Yates, Willem J. Bouma, ${ }^{2}$ and Leo Radom*
Contribution from the Research School of Chemistry, Australian National University, Canberra, A.C.T. 2601, Australia. Received March 20, 1986

Abstract

Ab initio molecular orbital calculations using split-valence plus polarization basis sets and incorporating electron correlation have been used to examine the ylide dications $\mathrm{CH}_{2} \mathrm{XH}^{2+}$ and their conventional isomers $\mathrm{CH}_{3} \mathrm{X}^{2+}$ ($\mathrm{X}=\mathrm{NH}_{2}, \mathrm{OH}$, $\mathrm{F}, \mathrm{PH}_{2}, \mathrm{SH}$, and Cl). Although highly exothermic fragmentation processes exist for the ylide dications, the barriers for such dissociations are calculated to be substantial. The ylide dications lie in relatively deep potential wells and are predicted to be observable species. In contrast, the more conventional $\mathrm{CH}_{3} \mathrm{X}^{2+}$ dications are found to have little or no barrier to dissociation and/or rearrangement. Calculated ionization energies are compared with $Q_{\text {min }}$ values recently reported from charge-stripping experiments.

It is well-known that simple ylides $\left(\mathrm{CH}_{2} \mathrm{XH}\right)$ are not particularly stable species and generally lie considerably higher in energy than their conventional isomers $\left(\mathrm{CH}_{3} \mathrm{X}\right)$. $^{3.4}$ In contrast, it has recently been found that ylidions ${ }^{5}\left(\mathrm{CH}_{2} \mathrm{XH}^{++}\right)$, which represent examples of distonic ${ }^{6}$ radical cations (species in which the charge and radical sites are formally separated), are generally quite stable and frequently lie lower in energy than their conventional isomers $\left(\mathrm{CH}_{3} \mathrm{X}^{++}\right)$. For example, the methyleneoxonium radical cation $\left(\mathrm{CH}_{2} \mathrm{OH}_{2}{ }^{\circ+}\right)$ is found ${ }^{7 \mathrm{acc}}$ to be substantially more stable than the methanol radical cation ($\mathrm{CH}_{3} \mathrm{OH}^{\bullet+}$) (by 45 (theory) ${ }^{7 \mathrm{a}}$ or 29 (experimental) ${ }^{7 \mathrm{c}} \mathrm{kJ} \mathrm{mol}^{-1}$). We have found ${ }^{8}$ that a continuation of this trend accompanies further ionization. Thus, whereas the methyleneoxonium dication $\left(\mathrm{CH}_{2} \mathrm{OH}_{2}{ }^{2+}\right)$ lies in a deep potential well, the methanol dication $\left(\mathrm{CH}_{3} \mathrm{OH}^{2+}\right)$ is not a stable entity, consistent with experimental results. ${ }^{9}$

In this paper, we explore the generality of the above results through calculations on the ylide dications $\left(\mathrm{CH}_{2} \mathrm{XH}^{2+}\right)$ and their conventional isomers $\left(\mathrm{CH}_{3} \mathrm{X}^{2+}\right)$ for a variety of first- and sec-ond-row substituents ($\mathrm{X}=\mathrm{NH}_{2}, \mathrm{OH}, \mathrm{F}, \mathrm{PH}_{2}, \mathrm{SH}$, and Cl). ${ }^{10}$

[^0]Although gas-phase dications were originally regarded as a curiosity and only observed incidentally in the course of normal mass spectrometric and collisional-activation studies, there has been considerable recent interest in such species. ${ }^{11,12}$ This has arisen to a large extent through advances in experimental techniques which are designed specifically for the study of dications and which utilize charge-stripping, ${ }^{13}$ double-charge-transfer, ${ }^{14}$ photon double ionization, ${ }^{15}$ and Auger ${ }^{16}$ processes.

Method and Results

Standard ab initio molecular orbital calculations were carried out using modified versions ${ }^{17,18}$ of the Gaussian 80^{19} and Gaussian
(11) For leading recent references to experimental studies, see: (a) Hanner, A. W.; Abbey, L. E.; Bostwick, D. E.; Burgess, E. M.; Moran, T. F. Org. Mass Spectrom. 1982, 17, 19. (b) Rabrenovic, M.; Proctor, C. J.; Ast, T.; Herbert, C. G.; Brenton, A. G.; Beynon, J. H. J. Phys. Chem. 1983, 87, 3305. (c) Rye, R. R.; Houston, J. E. J. Chem. Phys. 1983, 78, 4321. (d) Brehm, B.; Frōbe, U.; Neitzke, H.-P. Int. J. Mass Spectrom. Ion Processes 1984, 57, 91. (e) Kingston, R. G.; Guilhaus, M.; Brenton, A. G.; Beynon, J. H. Org. Mass Spectrom. 1985, 20, 406. (f) Fournier, P. G.; Fournier, J.; Salama, F.; Richardson, P. J.; Eland, J. H. D. J. Chem. Phys. 1985, 83, 241. (g) Koch, W.; Schwarz, H.; Maquin, F.; Stahl, D. Int. J. Mass Spectrom. Ion Processes 1985, 67, 305. (h) Koch, W.; Maquin, F.; Stahl, D.; Schwarz, H. Chimia 1985, 39, 376. (i) Lablanquie, P.; Nenner, I.; Millie, P.; Morin, P.; Eland, J. H. D.; Hubin-Franskin, M. J.; Delwiche, J. J. Chem. Phys. 1985, 82, 2951. (j) Samson, J. A. R.; Masuoka, T.; Pareek, P. N. J. Chem. Phys. 1985, 83, 5531. (k) Dujardin, G.; Winkoun, D. J. Chem. Phys. 1985, 83, 6222. (1) Mathur, D.; Badrinathan, C.; Rajgara, F. A.; Raheja, U. T. Chem. Phys. 1986, 103, 447. (m) Burdick, G. W.; Appling, J. R.; Moran, T. F. J. Phys. B 1986, 19, 629.
(12) For leading references to theoretical studies, see ref 8 and 11 h and: (a) Lammertsma, K.; Pople, J. A.; Schleyer, P. v. R. J. Am. Chem. Soc. 1986, 108, 7. (b) Koch, W.; Maquin, F.; Schwarz, H.; Stahl, D. J. Am. Chem. Soc. 1985, 107, 2256.
(13) (a) Higgins, W.; Jennings, K. R. J. Chem. Soc., Chem. Commun. 1965, 99. (b) Beynon, J. H.; Fontaine, A. E. Ibid 1966, 717. For leading recent references, see: (c) Ast, T. Adv. Mass Spectrom. 1980, 8, 555 . (d) Levsen, K.; Schwarz, H. Mass Spectrom. Rev. 1983, 2, 77. (e) Kingston, E. E.; Brenton, A. G.; Beynon, J. H.; Flammang, R.; Maquestiau, A. Int. J. Mass Spectrom. Ion Processes 1984, 62, 317. (f) Guilhaus, M.; Boyd, R. K.; Brenton, A. G.; Beynon, J. H. Int. J. Mass Spectrom. Ion Processes 1985, 67, 209. (g) Kingston, E. E.; Beynon, J. H.; Ast, T.; Flammang, R.; Maquestiau, A. Org. Mass Spectrom. 1985, 20, 546.
(14) See ref 13d and: (a) Appell, J.; Durup, J.; Fehsenfeld, F. C.; Fournier, P. J. Phys. B 1973, 6, 197. (b) Cooks, R. G.; Ast, T.; Beynon, J. H. Int. J. Mass Spectrom. Ion Phys. 1973, 11, 490.
(15) (a) Tsai, B. P.; Eland, J. H. D. Int. J. Mass Spectrom. Ion Phys. 1980, 36, 143. (b) Cosby, P. C.; Moller, R.; Helm, H. Phys. Rev. A 1983, 28, 766. (c) Curtis, D. M.; Eland, J. H. D. Int. J. Mass Spectrom. Ion Phys. 1985, 63, 241. (d) Dujardin, G.; Winkoun, D.; Leach, S. Phys. Rev. A 1985, 31, 3027.
(16) (a) Stalherm, D.; Cliff, B.; Hillig, H.; Melhorn, W. Z. Naturforsch., A: Astrophys. Phys. Chem. 1969, 24, 1728. (b) Spohr, R.; Bergmark, T.; Magnusson, N.; Werme, L. O.; Nordling, C.; Siegbahn, K. Phys. Scr. 1970, 2, 31. (c) Moddeman, W. E.; Carlson, T. A.; Krause, O.; Pullen, B. P. J. Chem. Phys. 1971, 55, 2317. For leading references, see: (d) Netzer, F. P.; Mathew, J. A. D. J. Electron Spectrosc. Relat. Phenom. 1979, 16, 359 . (e) Jennison, D. R. Phys. Rev. A 1981, 23, 1215. (f) Thomson, M.; Baker, M. D.; Christie, A.; Tyson, J. F. Auger Electron Spectroscopy; Wiley: New York, 1985.
(17) Farnell, L.; Nobes, R. H.; Poppinger, D.; Yates, B. F., unpublished results.
(18) Baker, J.; Nobes, R. H.; Poppinger, D., unpublished results.

Table I. Calculated Total Energies ${ }^{a}$ (Hartrees) and Zero-Point Vibrational Energies (ZPVE, kJ mol ${ }^{-1}$) for First-Row Systems

	$\mathrm{HF} / 3-21 \mathrm{G}^{\text {b }}$	HF/6-31G*	HF/6-31G**	MP2/6-31G**	MP3/6-31G**	ZPVE ${ }^{\text {b }}$
$\mathrm{CH}_{2} \mathrm{NH}_{3}{ }^{2+}$, 1a	-93.84167	-94.360 88	-94.37650	-94.653 36	-94.678 17	172.7
$\mathrm{TS}\left(1 \mathrm{a} \rightarrow \mathrm{CH}_{2}{ }^{+}+\mathrm{NH}_{3}{ }^{+}\right), 4 \mathrm{a}$	-93.760 92	-94.27189	-94.28760	-94.52708	-94.55796	152.0
TS($\mathbf{1 a} \rightarrow \mathrm{CH}_{2} \mathrm{NH}_{2}^{+}+\mathrm{H}^{+}$), 5a	-93.71813	-94.238 69	-94.25009	-94.54429	-94.56239	154.3
$\mathrm{NH}_{2}{ }^{+}\left({ }^{1} \mathrm{~A}_{1}\right)$	-54.822 90 ${ }^{\text {c }}$	-55.127 $29^{\text {c }}$	-55.13507	-55.25788	-55.27755	48.3
$\mathrm{NH}_{2}{ }^{+}\left({ }^{3} \mathrm{~B}_{1}\right)$	-54.91551^{c}	$-55.20852^{\text {c }}$	-55.21703 ${ }^{\text {c }}$	-55.31984 ${ }^{\text {c }}$	-55.33545 ${ }^{\text {c }}$	44.1
$\mathrm{NH}_{3}{ }^{+}\left({ }^{2} \mathrm{~A}_{2}{ }^{\prime \prime}\right)$	-55.576 26^{c}	-55.873 $2^{\text {c }}$	-55.884 89°	-56.02863^{c}	-56.04517^{c}	89.5
$\mathrm{CH}_{2} \mathrm{NH}_{2}{ }^{+}$	-93.862 $84^{\text {c }}$	-94.38318 ${ }^{\text {c }}$	-94.39471 ${ }^{\text {c }}$	-94.69086^{c}	-94.71039 ${ }^{\circ}$	152.7
$\mathrm{HCNH}_{2}{ }^{+}$	-93.208 $62^{\text {c }}$	-93.725 $39^{\text {c }}$	-93.73562 ${ }^{\text {c }}$	-93.996 61 ${ }^{\text {c }}$	-94.01486 ${ }^{\text {c }}$	110.7
$\mathrm{CH}_{2} \mathrm{NH}^{+}+$	-93.19793 ${ }^{\text {c }}$	-93.71748 ${ }^{\text {c }}$	-93.725 $55^{\text {c }}$	-93.978 $84^{\text {c }}$	-94.000 $85^{\text {c }}$	101.9
$\mathrm{HCNH}_{2}{ }^{2+}$	-92.568 72	-93.08446	-93.09625	-93.35808	-93.37277	98.7
$\mathrm{CH}_{2} \mathrm{NH}^{2+}$	-92.48139	-93.001 54	-93.01108	-93.270 20	-93.28675	83.0
$\mathrm{CH}_{2} \mathrm{OH}_{2}{ }^{2+}$, 1b	-113.51122	-114.12933	-114.14753	-114.43878	-114.45462	138.9
TS $\left(1 \mathrm{~b} \rightarrow \mathrm{CH}_{2}{ }^{+}+\mathrm{OH}_{2}{ }^{+}\right), 4 \mathrm{~b}$	-113.393 42	-114.01047	-114.02742	-114.276 54	-114.30242	111.8
TS($\left.\mathbf{1 b} \rightarrow \mathrm{CH}_{2} \mathrm{OH}^{+}+\mathrm{H}^{+}\right), \mathbf{5 b}$	-113.39359	-114.028 52	-114.03920	-114.33899	-114.35068	115.6
$\mathrm{OH}^{+}\left({ }^{1} \Sigma^{+}\right)$	$-74.43429^{\text {c }}$	$-74.83025^{\text {c }}$	$-74.83691^{\text {c }}$	-74.954 $53{ }^{\text {c }}$	-74.97290 ${ }^{\circ}$	17.7
$\mathrm{OH}^{+}\left({ }^{3} \Sigma^{-}\right)$	$-74.56991^{\text {c }}$	$-74.96875^{\text {c }}$	$-74.97463^{\text {c }}$	-75.074 66 ${ }^{\text {c }}$	$-75.08924^{\text {c }}$	17.4
$\mathrm{OH}_{2}{ }^{++}\left({ }^{2} \mathrm{~B}_{1}\right)$	$-75.20789^{\text {c }}$	-75.61531 ${ }^{\text {c }}$	$-75.62820^{\text {c }}$	-75.77397°	-75.78728 ${ }^{\text {c }}$	48.6
$\mathrm{CH}_{2} \mathrm{OH}^{+}$	-113.51414 ${ }^{\text {c }}$	-114.15643 ${ }^{\text {c }}$	-114.16713^{c}	-114.468 50 ${ }^{\circ}$	-114.48075 ${ }^{\circ}$	100.6
HCOH^{+}	-112.864 89 ${ }^{\circ}$	-113.50367°	-113.51303 ${ }^{\text {c }}$	-113.785 $48^{\text {c }}$	-113.794 40 ${ }^{\text {c }}$	71.0
HCOH^{2+}	-112.23409	-112.86321	-112.87251	-113.15045	-113.15207	67.1
$\mathrm{CH}_{2} \mathrm{FH}^{2+}$, 1c	-137.24247	-137.984 57	-137.99644	-138.27492	-138.28560	91.5
$\mathrm{TS}\left(\mathbf{1 c} \rightarrow \mathrm{CH}_{2}{ }^{+}+\mathrm{FH}^{++}\right), 4 \mathrm{c}$	-137.15159	-137.88790	-137.89947	-138.13333	-138.15468	74.1
$\underset{\mathrm{TS}}{\mathrm{F}}\left(\mathbf{1 c} \rightarrow \mathrm{CH}_{2} \mathrm{~F}^{+}+\mathrm{H}^{+}\right), 5 \mathrm{c}$	-137.19975	-137.94808	-137.95286	-138.23209	-138.240 54	76.3
$\mathrm{F}^{+}\left({ }^{1} \mathrm{D}\right)$	-98.12367	-98.63261	-98.63261	-98.72860	-98.744 29	0.0
$\mathrm{F}^{+}\left({ }^{3} \mathrm{P}\right)$	-98.27875 ${ }^{\text {c }}$	-98.79206 ${ }^{\text {c }}$	-98.79206 ${ }^{\text {c }}$	-98.86963 ${ }^{\text {c }}$	-98.879 92 ${ }^{\text {c }}$	0.0
$\mathrm{FH}^{+}\left({ }^{2} \mathrm{II}\right)$	-98.96743 ${ }^{\text {c }}$	-99.489 60 ${ }^{\text {c }}$	-99.49680	-99.626 13	-99.635 30	17.4
$\mathrm{CH}_{2} \mathrm{~F}^{+}$	$-137.32802^{\text {c }}$	-138.09379°	-138.09779	-138.38239	-138.389 56	75.3
HCF ${ }^{+}$	$-136.66803^{\text {c }}$	-137.43377°	$-137.43612^{\text {c }}$	$-137.69360^{\text {c }}$	-137.69670^{c}	35.8
HCF^{2+}	-135.861 39	-136.69858	-136.70186	-136.96725	-136.962 50	35.9
$\mathrm{CH}_{3}{ }^{+}$	-39.009 $13^{\text {c }}$	-39.23064 ${ }^{\text {c }}$	-39.23629	-39.346 52	-39.364 49	87.0
$\mathrm{CH}_{2}{ }^{+}\left({ }^{2} \mathrm{~A}_{1}\right)$	-38.34747 ${ }^{\circ}$	-38.566 $19{ }^{\text {c }}$	-38.57060	-38.649 32	-38.66444	45.0
H_{2}	-1.12296°	-1.12683	-1.13133	-1.15765	-1.16314	27.9
$\mathrm{H}_{2}{ }^{+}$	-0.583 $15^{\text {c }}$	-0.58407 ${ }^{\text {c }}$	-0.59448 ${ }^{\text {c }}$	-0.59448 ${ }^{\text {c }}$	-0.59448 ${ }^{\text {c }}$	12.4

${ }^{a}$ Based on $6-31 \mathrm{G}^{*}$-optimized geometries unless otherwise noted. ${ }^{b}$ Based on 3-21G-optimized geometries. ${ }^{6}$ From ref 38.
82^{20} programs. Optimized structures were obtained with the $3-21 \mathrm{G}^{(*)}$ and $6-31 \mathrm{G}^{*}$ basis sets. ${ }^{21,22}$ The spin-unrestricted Hartree-Fock (UHF) formalism was used for open-shell species and also for those transition structures connecting singlet molecules with their doublet fragments. Restricted Hartree-Fock (RHF) calculations were performed in remaining cases, unless otherwise noted. Improved relative energies were determined through sin-gle-point calculations with the $6-31 \mathrm{G}^{* *}$ basis set ${ }^{22}$ and with va-lence-electron correlation incorporated by using Moller-Plesset perturbation theory terminated at second (MP2) and third (MP3) order. ${ }^{23}$ Vibrational frequencies were calculated at the 3$21 G^{(*)} / / 3-21 G^{(*)}$ level in order to characterize stationary points on the surface as minima (representing equilibrium structures) or saddle points (representing transition structures) and to allow zero-point vibrational contributions to relative energies to be evaluated. The latter were scaled by 0.9 to allow for the overestimation of vibrational frequencies at this level of theory. Our best relative energies correspond to MP3/6-31 G**//6-31G* values with zero-point correction, calculated directly for first-row systems or estimated for second-row systems by using the additivity approximation ${ }^{24}$
$\Delta E\left(\mathrm{MP} 3 / 6-31 \mathrm{G}^{* *}\right) \approx \Delta E\left(\mathrm{MP} 3 / 6-31 \mathrm{G}^{*}\right)+$ $\Delta E\left(\mathrm{HF} / 6-31 \mathrm{G}^{* *}\right)-\Delta E\left(\mathrm{HF} / 6-31 \mathrm{G}^{*}\right)$

[^1]Unless otherwise noted, these are the values given in the text. Calculations are reported for the ylide dications $\left(\mathrm{CH}_{2} \mathrm{XH}^{2+}\right)$, their conventional isomers $\left(\mathrm{CH}_{3} \mathrm{X}^{2+}\right)$, five pairs of possible fragmentation products $\left(\mathrm{CH}_{2}{ }^{\bullet+}+\mathrm{XH}^{+}, \mathrm{CH}_{3}{ }^{+}+\mathrm{X}^{+}, \mathrm{CH}_{2} \mathrm{X}^{+}\right.$ $+\mathrm{H}^{+}, \mathrm{CHX}^{++}+\mathrm{H}_{2}{ }^{++}$, and $\mathrm{CHX}^{2+}+\mathrm{H}_{2}$), and the various transition structures for rearrangement and dissociation. The search for transition structures for $\mathrm{C}-\mathrm{X}$ fragmentation in the $\mathrm{CH}_{3} \mathrm{X}^{2+}$ dications (e.g., $\mathrm{CH}_{3} \mathrm{PH}_{2}{ }^{2+} \rightarrow \mathrm{CH}_{3}{ }^{+}+\mathrm{PH}_{2}{ }^{+}$) was restricted to the singlet surface. The optimized transition structures were found to be stable with respect to allowing spin contamination.

Ionization energies were calculated, for comparison with experimental charge-stripping data, both in a conventional manner, as a difference in energies of the doubly charged ions (from the present work) and the singly charged ions (from ref 7d), and by using an equations-of-motion approach. ${ }^{25}$ The latter calculations were carried out at the partial third-order level ${ }^{26}$ using the MOLECULE, ${ }^{27}$ EPSCF, ${ }^{28}$ and EOM ${ }^{29}$ packages. The core orbitals and virtual orbitals lying above 2 hartrees in energy were neglected in the EOM calculations. Such an approach has been previously found to be successful in the calculation of ionization energies. ${ }^{30}$

Calculated total energies are presented in Tables I and II and relative energies in Tables III and IV. Optimized structures (6-31G* with $3-21 \mathrm{G}^{(*)}$ values in parentheses) and schematic energy profiles are displayed as Figures $1-12$ within the course of the discussion. The ylide dications and their conventional
(24) (a) Nobes, R. H.; Bouma, W. J.; Radom, L. Chem. Phys. Lett. 1982, 89, 497. (b) McKee, M. L.; Lipscomb, W. N. J. Am. Chem. Soc. 1981, 103, 4673.
(25) For leading references, see: Correia, N.; Baker, J. J. Phys. Chem. 1985, 89, 3861.
(26) Baker, J. Chem. Phys. 1983, 79, 117.
(27) Almlöf, J. Report 74-29, Institute of Physics, University of Stockholm, Sweden.
(28) Beebe, N. H.; Purvis, G. D.; Kurtz, H. A., Quantum Theory Project, University of Florida, Gainesville, FL 32611.
(29) Baker, J., EOM, Department of Quantum Chemistry, University of Uppsala, Sweden.
(30) See, for example: Baker, J.; Pickup, B. T. Mol. Phys. 1983, 49, 651.

Table II. Calculated Total Energies ${ }^{a}$ (Hartrees) and Zero-Point Vibrational Energies (ZPVE, kJ mol ${ }^{-1}$) for Second-Row Systems

	HF/3-21 $\mathrm{G}^{\left({ }^{\circ}{ }^{\text {b }}\right.}$	HF/6-31G*	HF/6-31G**	MP2/6-31G*	MP3/6-31G*	ZPVE ${ }^{\text {b }}$
$\mathrm{CH}_{2} \mathrm{PH}_{3}{ }^{2+}$, 1d	-378.77551	-380.63010	-380.64160	-380.81591	-380.84727	142.1
$\mathrm{CH}_{3} \mathrm{PH}_{2}{ }^{2+}$, 2d	-378.75220	-380.60193	-380.61371	-380.81426	-380.840 27	143.7
$\mathrm{TS}(\mathbf{2 d} \rightarrow$ 1d), 3d	-378.73702	-380.59297	-380.60764	-380.80662	-380.833 82	139.2
$\mathrm{TS}\left(\mathbf{1 d} \rightarrow \mathrm{CH}_{2}{ }^{++}+\mathrm{PH}_{3}{ }^{+}\right.$), 4d	-378.704 97	-380.55887	-380.57073	-380.71945	-380.75192	124.4
$\mathrm{TS}\left(\mathbf{1 d} \rightarrow \mathrm{CH}_{2} \mathrm{PH}_{2}^{+}+\mathrm{H}^{+}\right)$, $5 \mathbf{d}$	-378.62578	-380.473 09	-380.48195	-380.69261	-380.71509	120.4
$\mathrm{TS}\left(\mathbf{2 d} \rightarrow \mathrm{CH}_{3}{ }^{+}+\mathrm{PH}_{2}{ }^{+}\right), \mathbf{6 d}$	-378.73095	-380.58660	-380.59759	-380.77724	-380.808 46	141.4
$\mathrm{TS}\left(\mathbf{2 d} \rightarrow \mathrm{CH}_{2} \mathrm{PH}_{2}^{+}+\mathrm{H}^{+}\right), \mathbf{7 d}$	-378.62548	-380.47118	-380.48037	-380.70254	-380.72198	123.4
$\mathrm{PH}_{2}^{+}\left({ }^{1} \mathrm{~A}_{4}\right)$	-339.87101	-341.50655	-341.51144	-341.58622	-341.605 27	39.5
$\mathrm{PH}_{2}{ }^{+}\left({ }^{3} \mathrm{~B}_{1}\right)$	-339.870 31	-341.50642	-341.51179	-341.57146	-341.58645	38.7
$\mathrm{PH}_{3}{ }^{+}\left({ }^{2} \mathrm{~A}_{1}\right)$	-340.49397	-342.13156	-342.13900	-342.21346	-342.23105	68.5
$\mathrm{CH}_{2} \mathrm{PH}_{2}^{+}$	-378.74313	-380.58799	-380.59701	-380.814 43	-380.83892	121.1
$\mathrm{HCPH}_{2}{ }^{+}$	-378.10587	-379.94791	-379.95491	-380.11753	-380.14422	81.3
$\mathrm{CH}_{2} \mathrm{PH}^{+}+$	-378.13097	-379.97504	-379.98126	-380.16277	-380.18957	91.1
$\mathrm{HCPH}_{2}{ }^{2+}$	-377.48044	-379.326 45	-379.334 59	-379.51618	-379.54392	79.5
$\mathrm{CH}_{2} \mathrm{PH}^{2+}$	-377.53462	-379.383 35	-379.390 23	-379.558 57	-379.588 07	84.8
$\mathrm{CH}_{2} \mathrm{SH}_{2}{ }^{2+}$, 1e	-434.72504	-436.79619	-436.80797	-437.01275	-437.04158	119.8
$\mathrm{CH}_{3} \mathrm{SH}^{2+}, 2 \mathrm{e}$	-434.644 24	-436.70918	-436.720 50	-436.95876	-436.98448	112.5
$\mathrm{TS}(\mathbf{2 e} \rightarrow \mathbf{1 e}), \mathbf{3 e}$	-434.642 51	-436.709 09	-436.720 36	-436.95734	-436.98326	110.3
$\mathrm{TS}\left(\mathbf{1 e} \rightarrow \mathrm{CH}_{2}{ }^{++}+\mathrm{SH}_{2}{ }^{\bullet+}\right.$), 4e	-434.67108	-436.737 33	-436.749 23	-436.91924	-436.95272	103.1
$\mathrm{TS}\left(1 \mathrm{e} \rightarrow \mathrm{CH}_{2} \mathrm{SH}^{+}+\mathrm{H}^{+}\right), 5 \mathrm{e}$	-434.622 42	-436.68627	-436.694 16	-436.922 79	-436.945 57	99.5
$\mathrm{TS}\left(2 \mathrm{e} \rightarrow \mathrm{CH}_{3}^{+}+\mathrm{SH}^{+}\right)$, 6 e	-434.62296	-436.69222	-436.702 38	-436.903 72	-436.93641	115.2
$\mathrm{SH}^{+}\left({ }^{(} \Sigma^{+}\right)$	-395.78787	-397.635 81	-397.640 26	-397.72744	-397.74736	16.9
$\mathrm{SH}^{+}\left({ }^{3} \Sigma^{-}\right)$	-395.87866	-397.72788	-397.73188	-397.806 16	-397.822 99	16.9
$\mathrm{SH}_{2}{ }^{+}\left({ }^{2} \mathrm{~B}_{1}\right)$	-396.476 39	-398.32699	-398.33466	-398.425 31	-398.444 16	42.1
$\mathrm{CH}_{2} \mathrm{SH}^{+}$	-434,74374	-436.807 11	-436.81465	-437.046 50	-437.069 91	99.8
HCSH^{+}(cis)	-434.093 34	-436.15369	-436.15970	-436.356 18	-436.38126	59.1
HCSH^{2+}	-433.450 79	-435.51580	-435.523 01	-435.74386	-435.762 99	54.9
$\mathrm{CH}_{2} \mathrm{ClH}^{2+}$, If	-495.79112	-498.10011	-498.11035	-498.33324	-498.35868	92.6
$\mathrm{TS}\left(1 \mathrm{f} \rightarrow \mathrm{CH}_{2}{ }^{+}+\mathrm{ClH}^{\bullet+}\right), 4 \mathrm{f}$	-495.73825	-498.03502	-498.04561	-498.229 53	-498.261 28	75.5
$\mathrm{TS}\left(\mathbf{1 f} \rightarrow \mathrm{CH}_{2} \mathrm{Cl}^{+}+\mathrm{H}^{+}\right), \mathbf{5 f}$	-495.71617	-498.01981	-498.023 93	-498.261 06	-498.281 49	72.4
$\mathrm{Cl}^{+}\left({ }^{1} \mathrm{D}\right)$	-456.836 30	-458.91415	-458.91415	-459.01343	-459.033 21	0.0
$\mathrm{Cl}^{+}\left({ }^{3} \mathrm{P}\right)$	-456.93594	-459.01502	-459.01502	-459.100 49	-459.11627	0.0
$\mathrm{ClH}^{++}\left({ }^{2} \mathrm{II}\right)$	-457.55304	-459.63397	-459.640 28	-459.74217	-459.759 35	17.2
$\mathrm{CH}_{2} \mathrm{Cl}^{+}$	-495.84633	-498.14992	-498.153 58	-498.39373	-498.41401	70.7
HCCl^{+}	-495.19505	-497.49695	-497.49916	-497.71916	-497.73735	32.5
HCCl^{2+}	-494.54182	-496.848 67	-496.851 26	-497.094 58	-497.10391	36.9
$\mathrm{CH}_{3}{ }^{+}$	c	c	c	-39.325 14	-39.34158	c
$\mathrm{CH}_{2}{ }^{+}\left({ }^{2} \mathrm{~A}_{1}\right)$	c	c	c	-38.635 21	-38.649 41	c
$\mathrm{H}_{2}+$	c	c	c	-1.14410	-1.14924	c
$\mathrm{H}_{2}{ }^{+}$	c	c	c	-0.584 07	-0.58407	c

${ }^{a}$ Based on $6-31 \mathrm{G}^{*}$-optimized geometries unless otherwise noted. ${ }^{b}$ Based on $3-21 \mathrm{G}^{(\boldsymbol{\theta}}$-optimized geometries. ${ }^{c}$ See Table I.
Table III. Calculated Relative Energies ${ }^{2}\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ for First-Row Systems

	HF/3-21G	HF/6-31G*	HF/6-31G**	MP2/6-31G**	MP3/6-31G**	MP3/6-31G ${ }^{* * b}$
$\mathrm{CH}_{2} \mathrm{NH}_{3}{ }^{2+}$, 1a	0	0	0	0	0	0
TS $\left(1 \mathrm{a} \rightarrow \mathrm{CH}_{2}{ }^{+}+\mathrm{NH}_{3}{ }^{++}\right.$), 4a	212	234	233	332	316	297
$\mathrm{TS}\left(1 \mathrm{a} \rightarrow \mathrm{CH}_{2} \mathrm{NH}_{2}{ }^{+}+\mathrm{H}^{+}\right), 5 \mathrm{a}$	324	321	332	286	304	287
$\mathrm{CH}_{2}{ }^{+}+\mathrm{NH}_{3}{ }^{+}+$	-215	-206	-207	-65	-83	-117
$\mathrm{CH}_{2} \mathrm{NH}_{2}{ }^{+}+\mathrm{H}^{+}$	-56	-59	-48	-98	-85	-103
$\mathrm{CH}_{3}{ }^{+}+\mathrm{NH}_{2}^{+}\left({ }^{1} \mathrm{~A}_{1}\right)$	25	8	13	129	95	61]
$\mathrm{CH}_{3}{ }^{+}+\mathrm{NH}_{2}{ }^{+}\left({ }^{3} \mathrm{~B}_{1}\right)$	-218	-206	-202	-34	-57	-95
$\mathrm{HCNH}_{2}{ }^{++}+\mathrm{H}_{2}{ }^{+}$	131	135	122	164	181	136
$\mathrm{CH}_{2} \mathrm{NH}^{++}+\mathrm{H}_{2}{ }^{+}$	159	156	148	210	218	165
$\mathrm{HCNH}_{2}{ }^{2+}+\mathrm{H}_{2}$	394	393	391	361	373	332
$\mathrm{CH}_{2} \mathrm{NH}^{2+}+\mathrm{H}_{2}$	623	610	615	592	599	544
$\mathrm{CH}_{2} \mathrm{OH}_{2}{ }^{2+}$, 1b	0	0	0	0	0	0
$\mathrm{TS}\left(\mathbf{1 b} \rightarrow \mathrm{CH}_{2}{ }^{++}+\mathrm{OH}_{2}{ }^{+}\right), \mathbf{4 b}$	309	312	315	426	400	375
$\mathrm{TS}\left(\mathbf{1 b} \rightarrow \mathrm{CH}_{2} \mathrm{OH}^{+}+\mathrm{H}^{+}\right), \mathbf{5 b}$	309	265	284	262	273	252
$\mathrm{CH}_{2}{ }^{+}+\mathrm{OH}_{2}{ }^{+}$	-116	-137	-135	41	8	-33
$\mathrm{CH}_{2} \mathrm{OH}^{+}+\mathrm{H}^{+}$	-8	-71	-51	-78	-69	-103
$\mathrm{CH}_{3}^{+}+\mathrm{OH}^{+}\left({ }^{(} \Sigma^{+}\right)$	178	180	195	362	308	277
$\mathrm{CH}_{3}^{+}+\mathrm{OH}^{+}\left({ }^{3} \mathrm{\Sigma}^{-}\right)$	-178	-184	-166	46	2	-29
$\mathrm{HCOH}^{++}+\mathrm{H}_{2}{ }^{+}$	166	109	105	155	173	123
$\mathrm{HCOH}^{2+}+\mathrm{H}_{2}$	405	366	377	343	366	326
$\mathrm{CH}_{2} \mathrm{FH}^{2+}$, 1c	0	0	0	0	0	0
$\mathrm{TS}\left(\mathbf{1 c} \rightarrow \mathrm{CH}_{2}{ }^{++}+\mathrm{FH}^{++}\right), \mathbf{4 c}$	239	254	255	372	344	328
TS(1c $\rightarrow \mathrm{CH}_{2} \mathrm{~F}^{+}+\mathrm{H}^{+}$), 5 c	112	96	114	112	118	105
$\mathrm{CH}_{2}{ }^{++}+\mathrm{FH}^{++}$	-190	-187	-186	-1	-37	-63
$\mathrm{CH}_{2} \mathrm{~F}^{+}+\mathrm{H}^{+}$	-225	-287	-266	-282	-273	-288
$\mathrm{CH}_{3}^{+}+\mathrm{F}^{+}\left({ }^{1} \mathrm{D}\right)$	288	319	335	525	464	460
$\mathrm{CH}_{3}^{+}+\mathrm{F}^{+}\left({ }^{3} \mathrm{P}\right)$	-119	-100	-84	154	108	104
$\mathrm{HCF}^{++}+\mathrm{H}_{2}{ }^{+}$	-23	-87	-90	-35	-15	-54
$\mathrm{HCF}^{2+}+\mathrm{H}_{2}$	678	418	429	394	420	395

[^2]Table IV. Calculated Relative Energies ${ }^{a}\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ for Second-Row Systems

	$\mathrm{HF} / 3-21 \mathrm{G}^{(}{ }^{\text {(}}$	HF/6-31G*	HF/6-31G**	MP2/6-31G*	MP3/6-31G*	MP3/6-31G** ${ }^{\text {a }}$	MP3/6-31G** ${ }^{\text {c }}$
$\mathrm{CH}_{2} \mathrm{PH}_{3}{ }^{2+}$, 1d	0	0	0	0	0	0	0
$\mathrm{CH}_{3} \mathrm{PH}_{2}{ }^{2+}$, 2d	61	74	73	4	18	18	19
$\mathrm{TS}(\mathbf{2 d} \rightarrow \mathbf{1 d})$, 3d	101	97	89	24	35	27	24
$\mathrm{TS}\left(1 \mathrm{~d} \rightarrow \mathrm{CH}_{2}{ }^{+}+\mathrm{PH}_{3}{ }^{++}\right), 4 \mathrm{~d}$	185	187	187	253	250	249	233
TS(1d $\rightarrow \mathrm{CH}_{2} \mathrm{PH}_{2}{ }^{+}+\mathrm{H}^{+}$), 5 d	393	412	419	324	347	354	334
$\mathrm{TS}\left(2 \mathrm{~d} \rightarrow \mathrm{CH}_{3}^{+}+\mathrm{PH}_{2}^{+}\right)$, 6 d	117	114	116	102	102	103	103
TS(2d $\rightarrow \mathrm{CH}_{2} \mathrm{PH}_{2}{ }^{+}+\mathrm{H}^{+}$), 7d	394	417	423	298	329	335	318
$\mathrm{CH}_{2}{ }^{+}+\mathrm{PH}_{3}{ }^{+}$	-173	-178	-179	-86	-87	-88	-114
$\mathrm{CH}_{2} \mathrm{PH}_{2}{ }^{+}+\mathrm{H}^{+}$	85	111	117	4	22	28	10
$\mathrm{CH}_{3}{ }^{+}+\mathrm{PH}_{2}{ }^{+}\left({ }^{1} \mathrm{~A}_{4}\right)$	-275	-281	-279	-251	-261	-259	-273
$\mathrm{CH}_{3}{ }^{+}+\mathrm{PH}_{2}{ }^{+}\left({ }^{3} \mathrm{~B}_{1}\right)$	-273	-281	-280	-212	-212	-211	-226
$\mathrm{HCPH}_{2}{ }^{++}+\mathrm{H}_{2}{ }^{+}+$	227	258	242	300	312	297	242
$\mathrm{CH}_{2} \mathrm{PH}^{++}+\mathrm{H}_{2}{ }^{+}$	161	186	173	181	193	180	134
$\mathrm{HCPH}_{2}{ }^{2+}+\mathrm{H}_{2}$	452	464	461	409	405	402	370
$\mathrm{CH}_{2} \mathrm{PH}^{2+}+\mathrm{H}_{2}$	309	315	315	297	289	289	263
$\mathrm{CH}_{2} \mathrm{SH}_{2}{ }^{2+}$, 1e	0	0	0	0	0	0	0
$\mathrm{CH}_{3} \mathrm{SH}^{2+}, 2 \mathrm{e}$	212	228	230	142	150	151	145
$\mathrm{TS}(2 \mathrm{e} \rightarrow 1 \mathrm{le})$, 3e	217	229	230	145	153	154	146
$\mathrm{TS}\left(1 \mathrm{e} \rightarrow \mathrm{CH}_{2}{ }^{++}+\mathrm{SH}_{2}{ }^{++}\right.$), 4e	142	155	154	245	233	233	218
$\mathrm{TS}\left(\mathbf{l e} \rightarrow \mathrm{CH}_{2} \mathrm{SH}^{+}+\mathrm{H}^{+}\right), 5 \mathbf{e}$	269	289	299	236	252	262	244
$\mathrm{TS}\left(2 \mathrm{e} \rightarrow \mathrm{CH}_{3}{ }^{+}+\mathrm{SH}^{+}\right)$, 6 e	268	273	277	286	276	280	276
$\mathrm{CH}_{2}{ }^{+}+\mathrm{SH}_{2}{ }^{+}$	-259	-255	-255	-125	-137	-137	-167
$\mathrm{CH}_{2} \mathrm{SH}^{+}+\mathrm{H}^{+}$	-49	-29	-18	-89	-74	-63	-81
$\mathrm{CH}_{3}^{+}+\mathrm{SH}^{+}\left({ }^{1} \mathrm{\Sigma}^{+}\right)$	-189	-184	-180	-105	-124	-120	-134
$\mathrm{CH}_{3}^{+}+\mathrm{SH}^{+}\left({ }^{3} \mathrm{\Sigma}^{-}\right)$	-427	-426	-421	-311	-323	-317	-332
$\mathrm{HCSH}^{++}+\mathrm{H}_{2}{ }^{+}$	128	154	141	190	200	188	145
$\mathrm{HCSH}^{2+}+\mathrm{H}_{2}$	397	403	403	328	340	340	307
$\mathrm{CH}_{2} \mathrm{ClH}^{2+}$, 1f	0	0	0	0	0	0	0
TS $\left(1 f \rightarrow \mathrm{CH}_{2}{ }^{+}++\mathrm{ClH}^{+}\right), 4 \mathrm{f}$	139	171	170	272	256	255	239
TS(1f $\rightarrow \mathrm{CH}_{2} \mathrm{Cl}^{+}+\mathrm{H}^{+}$), 5f	197	211	227	190	203	219	201
$\mathrm{CH}_{2}{ }^{+}+\mathrm{ClH}^{+}+$	-287	-263	-264	-116	-131	-133	-160
$\mathrm{CH}_{2} \mathrm{Cl}^{+}+\mathrm{H}^{+}$	-145	-131	-114	-159	-145	-128	-148
$\mathrm{CH}_{3}^{+}+\mathrm{Cl}^{+}\left({ }^{(} \mathrm{D}\right)$	-143	-117	-105	-14	-42	-30	-35
$\mathrm{CH}_{3}^{+}+\mathrm{Cl}^{+}\left({ }^{3} \mathrm{P}\right)$	-404	-382 50	-370	-243	-260	-248	-253
$\mathrm{HCCl}^{++}+\mathrm{H}_{2}{ }^{+}$	34	50	44	79	98	92	49
$\mathrm{HCCl}^{2+}+\mathrm{H}_{2}$	332	327	335	249	277	285	260

${ }^{a}$ Based on the total energies in Table II. ${ }^{b}$ Estimated by using the additivity approximation of eq 1 . ${ }^{c} \mathrm{MP} 3 / 6-31 \mathrm{G}^{* *}$ value with zero-point correction (see text).

Table V. Calculated Central Bond Lengths (\AA) for MP2/6-31G*-Optimized Structures

species		neutral	monocation
$\mathrm{CH}_{3} \mathrm{NH}_{2}$	1.465^{b}	1.431^{c}	
$\mathrm{CH}_{2} \mathrm{NH}_{3}$	1.559^{d}	1.470^{c}	
$\mathrm{CH}_{3} \mathrm{OH}^{d}$	1.424^{b}	1.405^{d}	1.420
$\mathrm{CH}_{2} \mathrm{OH}_{2}$	1.805^{e}	1.468^{d}	1.314
$\mathrm{CH}_{3} \mathrm{~F}$	1.392^{d}	1.310^{d}	
$\mathrm{CH}_{2} \mathrm{FH}$	g	1.557^{f}	1.366
$\mathrm{CH}_{3} \mathrm{PH}_{2}$	1.857^{d}	1.798^{d}	1.712
$\mathrm{CH}_{2} \mathrm{PH}_{3}$	1.674^{d}	1.765^{d}	1.865
$\mathrm{CH}_{3} \mathrm{SH}^{d}$	1.814^{d}	1.786^{d}	1.649
$\mathrm{CH}_{2} \mathrm{SH}_{2}$	1.635^{d}	1.759^{d}	1.674
$\mathrm{CH}_{3} \mathrm{Cl}^{d}$	1.778^{d}	1.765^{d}	
$\mathrm{CH}_{2} \mathrm{ClH}$	1.691^{d}	1.770^{d}	1.656

${ }^{a}$ MP2(full) $/ 6-31 \mathrm{G}^{*}$ total energies for $\mathrm{CH}_{2} \mathrm{NH}_{3}{ }^{2+}, \mathrm{CH}_{2} \mathrm{OH}_{2}{ }^{2+}$, $\mathrm{CH}_{2} \mathrm{FH}^{2+}, \quad \mathrm{CH}_{3} \mathrm{PH}_{2}{ }^{2+}, \quad \mathrm{CH}_{2} \mathrm{PH}_{3}{ }^{2+}, \quad \mathrm{CH}_{3} \mathrm{SH}^{2+}, \quad \mathrm{CH}_{2} \mathrm{SH}_{2}{ }^{2+}$, and $\mathrm{CH}_{2} \mathrm{ClH}^{2+}$ are $-94.62440,-114.41369,-138.26012,-380.83167$, $-381.83159,-436.98359,-437.03008$, and -498.34832 hartrees, respectively. ${ }^{b}$ From ref 38 . ${ }^{\text {c }}$ From: Yates, B. F.; Nobes, R. H.; Radom, L. Chem. Phys. Lett. 1985, 116, 474. ${ }^{\text {d }}$ From ref 7d. ' From: Harding, L. B.; Schlegel, H. B.; Krishnan, R.; Pople, J. A. J. Phys. Chem. 1980, 84, 3394. From ref 40 . ${ }^{8}$ No ylide-like minimum found.
isomers where appropriate were reoptimized at MP2/6-31G* to allow comparisons at this level of theory with recent results for the corresponding neutral and monocationic species. ${ }^{7 d}$ Optimized bond lengths (MP2/6-31G*) for the central $\mathrm{C}-\mathrm{X}$ bond in $\mathrm{CH}_{3} \mathrm{X}^{n+}$ and $\mathrm{CH}_{2} \mathrm{XH}^{n+}(n=0,1$, and 2$)$ are presented in Table V. Unless otherwise stated, geometric comparisons in the text refer to the MP2/6-31G* values.

Discussion

Methyleneammonium $\left(\mathrm{CH}_{2} \mathrm{NH}_{3}{ }^{2+}\right)$ and Methylamine $\left(\mathrm{CH}_{3} \mathrm{NH}_{2}{ }^{2+}\right)$ Dications. Optimized structures for the methyle-

la

40

Figure 1. Optimized structures for the methyleneammonium dication $\left(\mathrm{CH}_{2} \mathrm{NH}_{3}{ }^{2+}\right.$, 1a) and related systems.
neammonium dication (1a) and related species are presented in Figure 1. 1a has been studied previously by $a b$ initio techniques in an investigation ${ }^{31}$ of π-electron donation by the $\mathrm{NH}_{3}{ }^{+}$group in substituted cations and in a study ${ }^{32}$ of $\mathrm{CH}_{4} \mathrm{X}^{2+}$ dications. Our higher level calculations confirm the previously reported ${ }^{31}$ structure for $\mathrm{CH}_{2} \mathrm{NH}_{3}{ }^{2+}$ and, in addition, show that the eclipsed and staggered conformations are almost equivalent energetically. From Table V, it can be seen that the $\mathrm{C}-\mathrm{N}$ bond length of $1.420 \AA$ in

[^3]

Figure 2. Schematic energy profile for dissociative processes in the methyleneammonium dication (1a).
$\mathrm{CH}_{2} \mathrm{NH}_{3}{ }^{2+}$ is shorter than the $1.470 \AA$ calculated for the radical cation $\mathrm{CH}_{2} \mathrm{NH}_{3}{ }^{\circ+}$ and the $1.559 \AA$ calculated at the same level for the neutral $\mathrm{CH}_{2} \mathrm{NH}_{3}$. It is even shorter than the $\mathrm{C}-\mathrm{N}$ bond length of $1.465 \AA$ in neutral $\mathrm{CH}_{3} \mathrm{NH}_{2}$. The shortening may be attributed to hyperconjugative electron donation from the $\mathrm{NH}_{3}{ }^{+}$ group into the formally vacant porbital at carbon. As might have been anticipated, for 1a there is considerable flattening of the bonds at the carbon atom which is now formally a carbenium center.

The methylamine dication $\left(\mathrm{CH}_{3} \mathrm{NH}_{2}{ }^{2+}\right)$ is found to be unstable with respect to the 1,2 -hydrogen shift that yields 1a. This contrasts with the potential surface for the corresponding radical cations which showed ${ }^{33.34}$ a barrier of $168 \mathrm{~kJ} \mathrm{~mol}^{-1}$ separating $\mathrm{CH}_{3} \mathrm{NH}_{2}{ }^{\circ+}$ from $\mathrm{CH}_{2} \mathrm{NH}_{3}{ }^{++}$.

The schematic potential energy profile of Figure 2 shows that $\mathrm{CH}_{2} \mathrm{NH}_{3}{ }^{2+}$ is thermodynamically unstable with respect to fragmentation products $\mathrm{CH}_{2}{ }^{\bullet+}+\mathrm{NH}_{3}{ }^{++}$(by $117 \mathrm{~kJ} \mathrm{~mol}^{-1}$) and $\mathrm{CH}_{2} \mathrm{NH}_{2}^{+}+\mathrm{H}^{+}$(by $103 \mathrm{~kJ} \mathrm{~mol}^{-1}$). However, the barriers to such dissociations are substantial (297 and $287 \mathrm{~kJ} \mathrm{~mol}^{-1}$, respectively). Thus $\mathrm{CH}_{2} \mathrm{NH}_{3}{ }^{2+}$ lies in a deep potential well, consistent with its experimental observation in charge-stripping mass spectrometry experiments; ${ }^{9}$ these are discussed in more detail below.

We should point out that homolytic bond fission of the type $\mathrm{CH}_{2} \mathrm{NH}_{3}{ }^{2+} \rightarrow \mathrm{CH}_{2}{ }^{\bullet+}+\mathrm{NH}_{3}{ }^{\circ+}$ is not expected to be particularly well described by a single-configuration treatment. Indeed, for related dicationic fragmentations we have been able recently to demonstrate ${ }^{35}$ that there is only slow convergence of the Møller-Plesset perturbation expansion of the energy of the transition structure, leading to a substantial overestimation of the barrier to fragmentation. The slow convergence appears to be associated with spin contamination in the UHF wave function. ${ }^{35,36}$ The principal consequence in the present series of molecules is that the barriers for homolytic fragmentation, $\mathrm{CH}_{2} \mathrm{XH}^{2+} \rightarrow \mathrm{CH}_{2}{ }^{\circ+}$ $+\mathrm{XH}^{++}$, as calculated at our highest theoretical level, are likely to be too high by as much as $100 \mathrm{~kJ} \mathrm{~mol}^{-1}$. However, the qualitative conclusions are not affected by this correction in that there remain substantial residual barriers to homolytic fragmentation.
(33) Bouma, W. J.; Dawes, J. M.; Radom, L. Org. Mass Spectrom. 1983, 18, 12.
(34) Frisch, M. J.; Raghavachari, K.; Pople, J. A.; Bouma, W. J.; Radom, L. Chem. Phys. 1983, 75, 323.
(35) Gill, P. M. W.; Radom, L., submitted for publication.
(36) Handy, N. C.; Knowles, P. J.; Somasundram, K. Theor. Chim. Acta 1985, $68,87$.

4b

Figure 3. Optimized structures for the methyleneoxonium dication $\left(\mathrm{CH}_{2} \mathrm{OH}_{2}{ }^{2+}, \mathbf{1 b}\right)$ and related systems.

Figure 4. Schematic energy profile for dissociative processes in the methyleneoxonium dication (1b).

Methyleneoxonium ($\mathrm{CH}_{2} \mathrm{OH}_{2}{ }^{2+}$) and Methanol ($\mathrm{CH}_{3} \mathrm{OH}^{2+}$) Dications. We have reported preliminary results for these systems previously; ${ }^{8}$ calculations on $\mathrm{CH}_{2} \mathrm{OH}_{2}{ }^{2+}$ with limited geometry optimization have been reported by others. ${ }^{37}$

The methyleneoxonium dication ($\mathrm{CH}_{2} \mathrm{OH}_{2}{ }^{2+}, 1 \mathrm{~b}$), isoelectronic with ethylene, is found to be planar with $C_{2 v}$ symmetry (Figure 3). The $\mathrm{C}-\mathrm{O}$ bond is quite short, with a length $(1.314 \AA)$ between that of a normal $\mathrm{C}-\mathrm{O}$ single bond (e.g., $1.424 \AA$ in methanol) and a C-O double bond (e.g., $1.221 \AA$ in formaldehyde). ${ }^{38}$ The C-O length is similar to that of the ethylenic $\mathrm{C}=\mathrm{C}$ double bond (1.336 \AA). ${ }^{38}$ The shortness of the $\mathrm{C}-\mathrm{O}$ bond may be attributed to strong delocalization from the lone pair on oxygen into the formally vacant p orbital at carbon.
(37) (a) Strausz, O. P.; Kozmutza, C.; Kapuy, E.; Robb, M. A.; Theodorakopoulos, G.; Csizmadia, I. G. Theor. Chim. Acta 1978, 48, 215 . (b) Strausz, O. P.; Kapuy, E.; Kozmutza, C.; Robb, M. A.; Csizmadia, I. G. J. Mol. Struct. 1982, 89, 235. (c) Novoa, J. J. J. Mol. Struct., Theochem 1985, 121, 29.
(38) Whiteside, R. A.; Frisch, M. J.; Binkley, J. S.; Krishnan, R.; DeFrees, D. J.; Schlegel, H. B.; Pople, J. A. Carnegie-Mellon Quantum Chemistry Archive; Department of Chemistry, Carnegie-Mellon University: Pittsburgh, PA, 1983.

lc

$4 c$

5c

Figure 5. Optimized structures for the methylenefluoronium dication $\left(\mathrm{CH}_{2} \mathrm{FH}^{2+}\right.$, 1c) and related systems.

As with $\mathrm{CH}_{2} \mathrm{NH}_{3}{ }^{2+}, \mathrm{CH}_{2} \mathrm{OH}_{2}{ }^{2+}$ is thermodynamically unstable with respect to fragmentation products (Figure 4), lying 33 kJ mol^{-1} above $\mathrm{CH}_{2}^{\bullet+}+\mathrm{OH}_{2}^{\bullet+}$ and $103 \mathrm{~kJ} \mathrm{~mol}^{-1}$ above $\mathrm{CH}_{2} \mathrm{OH}^{+}$ $+\mathrm{H}^{+}$. However, the barriers to such dissociation processes are large, the lower energy decomposition pathway, i.e., via $\mathbf{5 b}$ to give $\mathrm{CH}_{2} \mathrm{OH}^{+}+\mathrm{H}^{+}$, requiring $252 \mathrm{~kJ} \mathrm{~mol}^{-1} .{ }^{39}$

The methanol dication $\left(\mathrm{CH}_{3} \mathrm{OH}^{2+}\right)$ is found to fall apart on both the $3-21 \mathrm{G}$ and $6-31 \mathrm{G}^{*}$ surfaces. Geometry optimization, starting with the $\mathrm{CH}_{3} \mathrm{OH}^{++}$structure, leads under an RHF constraint to a weak complex (8b) of HCOH^{2+} and H_{2}, but this no longer bears any resemblance to methanol. The complex $\mathbf{8 b}$ lies substantially higher in energy (by $312 \mathrm{~kJ} \mathrm{~mol}^{-1}$) than $\mathbf{1 b}$. With UHF calculations, such an optimization results in the highly exothermic production of $\mathrm{HCOH}^{\bullet+}+\mathrm{H}_{2}{ }^{\bullet+}$ (lying $170 \mathrm{~kJ} \mathrm{~mol}^{-1}$ below 8b).

Methylenefluoronium ($\mathrm{CH}_{2} \mathrm{FH}^{2+}$) and Fluoromethane $\left(\mathrm{CH}_{3} \mathrm{~F}^{2+}\right.$) Dications. The methylenefluoronium dication (1c) is isoelectronic with formaldimine ($\mathrm{CH}_{2}=\mathrm{NH}$). Its preferred structure (Figure 5) is planar, in contrast to the orthogonal C_{s} structure of the radical cation $\left(\mathrm{CH}_{2} \mathrm{FH}^{++}\right) ;{ }^{40}$ the $\mathrm{C}-\mathrm{F}$ bond ($1.366 \AA$) is slightly shorter than normal $\mathrm{C}-\mathrm{F}$ single bonds (e.g., $1.392 \AA$ in $\mathrm{CH}_{3} \mathrm{~F}$), but the degree of shortening is markedly less than in the $\mathrm{CH}_{2} \mathrm{OH}_{2}{ }^{2+}$ case. Thus, although the planar structure of $\mathrm{CH}_{2} \mathrm{FH}^{+}$suggests that one of the lone pairs on fluorine is involved in π-bonding to carbon, ${ }^{41}$ Coulombic repulsion appears to play a larger role here than in the oxygen case.

The methylenefluoronium dication (1c) lies in a somewhat shallower well than does $\mathrm{CH}_{2} \mathrm{NH}_{3}{ }^{2+}$ and $\mathrm{CH}_{2} \mathrm{OH}_{2}{ }^{2+}$. The barrier to the highly exothermic (by $288 \mathrm{~kJ} \mathrm{~mol}^{-1}$) fragmentation to $\mathrm{CH}_{2} \mathrm{~F}^{+}+\mathrm{H}^{+}$is reduced to $105 \mathrm{~kJ} \mathrm{~mol}^{-1}$.

The fluoromethane dication is found to be unstable. With RHF calculations, dissociation to give $\mathrm{H}^{+}+\mathrm{CH}_{2} \mathrm{~F}^{+}$can take place without a barrier.

Methylenephosphonium ($\mathrm{CH}_{2} \mathrm{PH}_{3}{ }^{2+}$) and Methylphosphine $\left(\mathrm{CH}_{3} \mathrm{PH}_{2}{ }^{2+}\right)$ Dications. The methylenephosphonium dication has a preferred staggered conformation (1d, Figure 7) with a nearplanar carbenium center. The alternative eclipsed conformation ($1 \mathbf{d}^{e}$) lies higher in energy by just $0.2 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and is confirmed by frequency calculations to be located at a saddle point on the surface; i.e., it represents the transition structure for internal rotation. The $\mathrm{C}-\mathrm{P}$ bond length in $\mathrm{CH}_{2} \mathrm{PH}_{3}{ }^{2+}$ is $1.865 \AA$, which is longer than the $\mathrm{C}-\mathrm{P}$ bond in the ylidion ($1.765 \AA$) and longer than a normal $\mathbf{C - P}$ single bond (e.g., $1.857 \AA$ in $\mathrm{CH}_{3} \mathrm{PH}_{2}$). Hyperconjugative interactions in $\mathrm{CH}_{2} \mathrm{PH}_{3}{ }^{2+}$ appear to be less important than in $\mathrm{CH}_{2} \mathrm{NH}_{3}{ }^{2+}$, as might have been anticipated.
(39) Similar results were obtained recently ${ }^{37 c}$ but at a less precise level of theory.
(40) Bouma, W. J.; Yates, B. F.; Radom, L. Chem. Phys. Lett. 1982, 92, 620.
(41) Strong π-donation from fluorine has recently been invoked to explain the calculated shortening of $\mathrm{C}-\mathrm{F}$ lengths in the series $\mathrm{CF}_{2}, \mathrm{CF}_{2}{ }^{++}$, and $\mathrm{CF}_{2}{ }^{2+}$: Koch, W.; Frenking, G. Chem. Phys. Lett. 1985, 114, 178.

Figure 6. Schematic energy profile for dissociative processes in the methylenefluoronium dication (1c).

For the methylphosphine dication, the eclipsed conformation ($\mathbf{2} \mathrm{d}^{\mathrm{d}}$) is marginally favored at the $3-21 \mathrm{G}^{\left({ }^{(*)}\right)}$ level of theory. However, we find that at our highest level the preferred conformation is staggered (2d), with the barrier to rotation via the eclipsed form being again just $0.2 \mathrm{~kJ} \mathrm{~mol}^{-1}$. The $\mathrm{C}-\mathrm{P}$ bond length of $1.712 \AA$ in $\mathrm{CH}_{3} \mathrm{PH}_{2}{ }^{2+}$ is shorter than both the $1.798 \AA$ in singly charged $\mathrm{CH}_{3} \mathrm{PH}_{2}{ }^{\bullet+}$ and the $1.857 \AA$ in neutral $\mathrm{CH}_{3} \mathrm{PH}_{2}$. Frequency calculations show that $\mathrm{CH}_{3} \mathrm{PH}_{2}{ }^{2+}(2 \mathrm{~d})$ is a true minimum on the $6-31 G^{*}$ potential surface. However, the barrier to rearrangement via transition structure 3d (Figure 8) is very small, and the barrier may disappear entirely at higher levels of theory.

The lowest energy decomposition pathway for $\mathrm{CH}_{2} \mathrm{PH}_{3}{ }^{2+}(\mathbf{1 d})$ involves hydrogen migration (via 3 d) followed by $\mathbf{C}-\mathbf{P}$ bond rupture (via 6 d) to give $\mathrm{CH}_{3}{ }^{+}+\mathrm{PH}_{2}{ }^{+}$. This process has a barrier of $103 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and an exothermicity of $273 \mathrm{~kJ} \mathrm{~mol}^{-1}$. Higher energy processes include direct breakage of the $\mathrm{C}-\mathrm{P}$ bond in $\mathbf{1 d}$ to give $\mathrm{CH}_{2}{ }^{\bullet+}+\mathrm{PH}_{3}{ }^{++}$and fragmentation to give $\mathrm{CH}_{2} \mathrm{PH}_{2}^{+}+$ H^{+}, the latter being slightly endothermic.

Methylenesulfonium ($\mathrm{CH}_{2} \mathrm{SH}_{2}{ }^{2+}$) and Methanethiol ($\mathrm{CH}_{3} \mathbf{S H}^{2+}$) Dications. In contrast to the methyleneoxonium dication (isoelectronic with ethylene) which has a planar structure (1b), the methylenesulfonium dication (isoelectronic with silaethylene) has an anti (C_{s}) structure, strongly bent at sulfur (1e, Figure 9). Although this result might appear surprising at first glance, it is consistent with the greater pyramidality of $\mathrm{H}_{3} \mathrm{~S}^{+}$compared with $\mathrm{H}_{3} \mathrm{O}^{+}$(bond angles of 96.9° and 113.1°, respectively, at HF/6$31 \mathrm{G}^{*}$) and also reflects a reduced tendency for delocalization of the lone pair on sulfur into the formally vacant p orbital on the adjacent carbon. Nevertheless, the $\mathrm{C}-\mathrm{S}$ bond in $\mathrm{CH}_{2} \mathrm{SH}_{2}{ }^{2+}$ is quite short, with a length ($1.674 \AA$) which is considerably less than that of the C -S bond in neutral methanethiol ($1.814 \AA$).

The preferred conformation of the methanethiol dication is eclipsed (2e), the barrier to internal rotation via the staggered structure ($2 \mathrm{e}^{\mathrm{s}}$) being $11 \mathrm{~kJ} \mathrm{~mol}^{-1}$. The calculated structure (2e) resembles a complex of $\mathrm{HCSH}^{2+}+\mathrm{H}_{2}$ (or of $\mathrm{HCSH}^{++}+\mathrm{H}_{2}{ }^{\bullet+}$) in that the $\mathrm{C}-\mathrm{S}$ bond is short ($1.649 \AA$) and the symmetryequivalent $\mathrm{C}-\mathrm{H}$ bonds are unusually long ($1.217 \AA$)

Although $\mathrm{CH}_{3} \mathrm{SH}^{2+}(2 e)$ is found to be a minimum in this study, its rearrangement to $\mathrm{CH}_{2} \mathrm{SH}_{2}{ }^{2+}$ (1e) via a 1,2 -hydrogen shift requires only $1 \mathrm{~kJ} \mathrm{~mol}^{-1}$, and it is quite probable that at higher levels of theory this barrier for rearrangement would disappear

$1 d$

2d

$2 d^{e}$

3d

7d

Figure 7. Optimized structures for the methylenephosphonium dication $\left(\mathrm{CH}_{2} \mathrm{PH}_{3}{ }^{2+}, 1 \mathbf{1 d}\right)$ and related systems.
altogether. For its part, $\mathrm{CH}_{2} \mathrm{SH}_{2}{ }^{2+}$ lies in a moderately deep well, with barriers of 218 and $244 \mathrm{~kJ} \mathrm{~mol}^{-1}$ to fragmentation to $\mathrm{CH}_{2}{ }^{+}$ $+\mathrm{SH}_{2}{ }^{++}$and $\mathrm{CH}_{2} \mathrm{SH}^{+}+\mathrm{H}^{+}$, respectively.

In contrast to the situation for $\mathrm{CH}_{2} \mathrm{PH}_{3}{ }^{2+}$, hydrogen migration in $\mathrm{CH}_{2} \mathrm{SH}_{2}{ }^{2+}$ followed by $\mathrm{C}-\mathrm{S}$ bond rupture to give $\mathrm{CH}_{3}{ }^{+}+\mathrm{SH}^{+}$ is not expected to be a competitive process for decomposition of $\mathrm{CH}_{2} \mathrm{SH}_{2}{ }^{2+}$ since this would require $58 \mathrm{~kJ} \mathrm{~mol}^{-1}$ more energy than direct rupture of the $\mathrm{C}-\mathrm{S}$ bond.

The search for a transition structure for formation of $\mathrm{CH}_{2} \mathrm{SH}^{+}$ $+\mathrm{H}^{+}$from $\mathrm{CH}_{3} \mathrm{SH}^{2+}$ was unsuccessful. Test calculations suggest that there is a very large barrier to proton loss from the carbon

Figure 8. Schematic energy profile for dissociative processes in the methylenephosphonium dication (1d).
of $\mathrm{CH}_{3} \mathrm{SH}^{2+}$. Indeed, the lower energy pathway probably involves a 1,2 -hydrogen shift (via 3e), followed by proton loss from the sulfur.
Methylenechloronium $\left(\mathrm{CH}_{2} \mathrm{ClH}^{2+}\right)$ and Chloromethane $\left(\mathrm{CH}_{3} \mathrm{Cl}^{2+}\right)$ Dications. The methylenechloronium dication (1f, Figure 11) is planar, with a $\mathrm{C}-\mathrm{Cl}$ length ($1.656 \AA$) considerably shorter than that of normal $\mathrm{C}-\mathrm{Cl}$ bonds (e.g., $1.778 \AA$ in chloromethane). Although the $\mathrm{C}-\mathrm{Cl}$ bond in $\mathbf{1 f}$ is still longer than that in $\mathrm{CH}_{2} \mathrm{Cl}^{+}(1.588 \AA)$, the degree of shortening relative to neutral $\mathrm{CH}_{3} \mathrm{Cl}$ is much greater than that calculated for $\mathrm{CH}_{2} \mathrm{FH}^{2+}$. This is somewhat surprising since it is usually held that second-row atoms have a smaller tendency to participate in π-bonding than do first-row atoms ${ }^{42}$ and suggests the reduced importance of coulombic repulsion in the second-row system. As with $\mathrm{CH}_{2} \mathrm{FH}^{2+}$, the planar geometry of $\mathrm{CH}_{2} \mathrm{ClH}^{2+}$ contrasts markedly with the twisted C_{1} structure predicted ${ }^{7 \mathrm{~d}}$ for the ylidion, $\mathrm{CH}_{2} \mathrm{ClH}^{++}$.
The methylenechloronium dication (1f) lies in a much deeper potential well than $\mathrm{CH}_{2} \mathrm{FH}^{2+}$, with barriers to decomposition to $\mathrm{CH}_{2} \mathrm{Cl}^{+}+\mathrm{H}^{+}$and $\mathrm{CH}_{2}{ }^{-+}+\mathrm{ClH}^{\bullet+}$ of 201 and $239 \mathrm{~kJ} \mathrm{~mol}^{-1}$, respectively.
The chloromethane dication is not stable, and any structure bearing some resemblance to neutral chloromethane lies very high in energy on the potential surface at both $3-21 \mathrm{G}^{(*)}$ and $6-31 \mathrm{G}^{*}$. Optimizations at these levels show that $\mathrm{CH}_{3} \mathrm{Cl}^{2+}$ dissociates without a barrier to $\mathrm{CH}_{3}^{+}+\mathrm{Cl}^{+}$.
$\mathrm{CH}_{3} \mathrm{X}^{2+}$ Dications. In our search for possible $\mathrm{CH}_{3} \mathrm{X}^{2+}$ structures, we explored two further avenues. First, we looked for low-lying triplet structures of $\mathrm{CH}_{3} \mathrm{X}^{2+}$, having found that for several of the X^{+}cations $\left(\mathrm{X}=\mathrm{NH}_{2}, \mathrm{OH}, \mathrm{F}, \mathrm{SH}\right.$, and Cl$)$ the triplet lies much lower in energy than the singlet. ${ }^{43}$ In each case, however, the triplet $\mathrm{CH}_{3} \mathrm{X}^{2+}$ dications were found to dissociate spontaneously (either to $\mathrm{CH}_{3}^{+}+\mathrm{X}^{+}$or to $\mathrm{CH}_{2} \mathrm{X}^{+}+\mathrm{H}^{+}$).
The second avenue of exploration was concerned with determining whether any planar $\mathrm{CH}_{3} \mathrm{X}^{2+}$ dications might be stable structures. It is well established that the parent methane dication, $\mathrm{CH}_{4}{ }^{2+}$, prefers a square-planar $\left(D_{4 h}\right)$ structure. ${ }^{44}$ We searched

[^4]
le

46

60

28

$$
2 \mathrm{e}^{5}
$$

 $\mathrm{CH}_{2} \mathrm{SH}_{2}{ }^{2+}$, 1 e) and related systems.
the individual $\mathrm{CH}_{3} \mathrm{X}^{2+}$ surfaces at various levels of theory (including optimizations at the MP2/6-31G* level) but were unable to find any planar structures which are located at minima on these surfaces.

It would appear that the $\mathrm{CH}_{3} \mathrm{X}^{2+}$ dications are not particularly stable species. For those systems that do reside at a local minimum on the potential surface ($\mathrm{X}=\mathrm{PH}_{2}, \mathrm{SH}$), the positive charge is concentrated on X (e.g., for $\mathrm{CH}_{3} \mathrm{PH}_{2}{ }^{2+}$ the Mulliken charges are distributed $+1.64\left(\mathrm{PH}_{2}\right)$ and $+0.36\left(\mathrm{CH}_{3}\right)$). For more electronegative $\mathrm{X}\left(\mathrm{X}=\mathrm{NH}_{2}, \mathrm{OH}, \mathrm{F}, \mathrm{Cl}\right)$, double ionization becomes more difficult and the $\mathrm{CH}_{3} \mathrm{X}^{2+}$ dications become unstable with respect to dissociation.

Comparative Data for Possible Fragmentation Products of Ylide Dications. It is of interest to compare theoretical and experimental relative energies for the possible fragmentation products of the ylide dications, as shown in Table VI. For the first-row substituents (X) the thermodynamically preferred fragmentation products correspond to $\mathrm{CH}_{2} \mathrm{X}^{+}+\mathrm{H}^{+}$, whereas for the second-row

[^5]

Figure 10. Schematic energy profile for dissociative processes in the methylenesulfonium dication (1e).

Figure 11. Optimized structures for the methylenechloronium dication $\left(\mathrm{CH}_{2} \mathrm{ClH}^{2+}\right.$, 1f) and related systems.

Table VI. Theoretical ${ }^{a}$ and Experimental ${ }^{b}$ Relative Energies ($\mathrm{kJ} \mathrm{mol}^{-}$) for Possible Fragmentation Products of Ylide Dications

X	$\mathrm{CH}_{2}{ }^{+}+\mathrm{XH}^{+}$		$\mathrm{CH}_{2} \mathrm{X}^{+}+\mathrm{H}^{+}$		$\mathrm{CH}_{3}^{+}+\mathrm{X}^{+}$	
	theor	exptl	theor	exptl	theor	exptl
NH_{2}	0	0	14	$-54{ }^{\text {c }}$	22	19
OH	0	0	-70	-128	4	6
F	0	0	-225	$-301{ }^{\text {c }}$	167	182
PH_{2}	0	0	124		-159	-182
SH	0	0	86	$7{ }^{\text {d }}$	-165	-151
Cl	0	0	12	-41 ${ }^{\text {c,e }}$	-93	-69

${ }^{a}$ MP3/6-31G** values with zero-point vibrational contribution (from Tables III and IV). ${ }^{b}$ From $\Delta H_{i}{ }_{0}$ data in ref 45a, unless otherwise noted. ${ }^{c} \Delta H_{\mathrm{i}}{ }^{\circ}{ }^{298}$ value for $\mathrm{CH}_{2} \mathrm{X}^{+}$corrected to 0 K with the aid of calculated vibrational frequencies. ${ }^{d} \Delta H_{\mathrm{f}}{ }^{\circ}$ for $\mathrm{CH}_{2} \mathrm{SH}^{+}$from ref 45 b , ${ }^{e} \Delta H_{f}{ }^{\circ}{ }_{298}$ for $\mathrm{CH}_{2} \mathrm{Cl}^{+}$from ref 45 c .
substituents the $\mathrm{CH}_{3}^{+}+\mathrm{X}^{+}$pair is preferred. It should be noted with respect to the latter situation that, except for $\mathrm{PH}_{2}{ }^{+}$, the ground state for all the X^{+}cations is a triplet.

Figure 12. Schematic energy profile for dissociative processes in the methylenechloronium dication (1f).

There is good agreement between the calculated relative energies of the $\mathrm{CH}_{2}{ }^{++}+\mathrm{XH}^{++}$and $\mathrm{CH}_{3}{ }^{+}+\mathrm{X}^{+}$pairs and experimental values. ${ }^{45}$ These comparisons (with the exception of $\mathrm{X}=\mathrm{PH}_{2}$ for which $\mathrm{PH}_{2}{ }^{+}$is a ground-state singlet) are all isogyric, ${ }^{46}$ i.e., the number of electron pairs is conserved, and are well-handled at the MP3/6-31G** level of theory.

The comparisons of $\mathrm{CH}_{2}{ }^{++}+\mathrm{XH}^{+}$with $\mathrm{CH}_{2} \mathrm{X}^{+}+\mathrm{H}^{+}$, on the other hand, are nonisogyric for all X. There is consequently a large correlation contribution to the relative energies, which results in the $\mathrm{CH}_{2}{ }^{++}+\mathrm{XH}^{\bullet+}$ pair being artificially favored when the incorporation of electron correlation is incomplete. The magnitude of the error at the MP3/6-31G** level lies in the quite narrow range $65 \pm 15 \mathrm{~kJ} \mathrm{~mol}^{-1}$. In a similar manner, there is an error of $23 \mathrm{~kJ} \mathrm{~mol}^{-1}$ in the (nonisogyric) comparison of $\mathrm{CH}_{2}{ }^{-+}+\mathrm{PH}_{3}{ }^{++}$ and $\mathrm{CH}_{3}{ }^{+}+\mathrm{PH}_{2}{ }^{+}$, referred to above.

Support for these arguments comes from relative energies calculated at the MP4/6-31G** level ${ }^{47}$ which lead to somewhat reduced errors for the nonisogyric comparisons. For example, the energy of $\mathrm{CH}_{2} \mathrm{NH}_{2}{ }^{+}+\mathrm{H}^{+}$relative to $\mathrm{CH}_{2}{ }^{\bullet+}+\mathrm{NH}_{3}{ }^{++}$is 1 kJ mol^{-1} (MP4/6-31G**) compared with 14 (MP3/6-31G**) and -54 (experimental) $\mathrm{kJ} \mathrm{mol}^{-1}$. Again, for $\mathrm{CH}_{3}{ }^{+}+\mathrm{PH}_{2}{ }^{+}$relative to $\mathrm{CH}_{2}{ }^{++}+\mathrm{PH}_{3}{ }^{++}$, the MP4/6-31G** energy is $-163 \mathrm{~kJ} \mathrm{~mol}^{-1}$ compared with -159 (MP3/6-31G**) and -182 (experimental) $\mathrm{kJ} \mathrm{mol}^{-1}$. There is a smaller difference, as might have been expected, between MP4 and MP3 results for the isogyric comparisons. For example, for $\mathrm{CH}_{3}{ }^{+}+\mathrm{NH}_{2}{ }^{+}$relative to $\mathrm{CH}_{2}{ }^{++}+$ $\mathrm{NH}_{3}{ }^{\circ+}$ the values are 22 (MP3/6-31G**), 22 (MP4/6-31G**), and 19 (experimental) $\mathrm{kJ} \mathrm{mol}^{-1}$.

Calculated Ionization Energies and Relationship with ChargeStripping Mass Spectrometry Experiments. Charge-stripping mass spectrometry experiments have been carried out ${ }^{9}$ for most of the systems examined in the present study. In general, intense peaks corresponding to $\left[\mathrm{CH}_{3} \mathrm{X}^{2+}\right]$ were found ${ }^{9 a, b}$ in the spectra of $\mathrm{CH}_{2} \mathrm{XH}^{++}$but not in the spectra of $\mathrm{CH}_{3} \mathrm{X}^{++} .48$ Experimental $Q_{\text {min }}$ values have been reported ${ }^{9}$ for $\mathrm{X}=\mathrm{NH}_{2}, \mathrm{OH}, \mathrm{F}, \mathrm{SH}$, and Cl

[^6]Table VII. Calculated ${ }^{a}$ Vertical ($\mathrm{IE}_{\mathrm{v}}, \mathrm{eV}$) and Adiabatic ($\mathrm{IE}_{\mathrm{a}}, \mathrm{eV}$) Ionization Energies, Calculated ${ }^{2}$ Excess Energies ($\Delta E, \mathrm{~kJ} \mathrm{~mol}^{-1}$), and Experimental ${ }^{b} Q_{\text {min }}$ Values (eV)

process	IE_{v}	EOM^{c}	IE_{a}	ΔE	$Q_{\text {min }}$
$\mathrm{CH}_{2} \mathrm{NH}_{3}{ }^{++} \rightarrow \mathrm{CH}_{2} \mathrm{NH}_{3}{ }^{2+}$	16.2	15.8	15.9	29	18.9
$\mathrm{CH}_{3} \mathrm{NH}_{2}{ }^{++} \rightarrow \mathrm{CH}_{3} \mathrm{NH}_{2}{ }^{2+}$	19.7				17.7
$\mathrm{CH}_{2} \mathrm{OH}_{2}{ }^{++} \rightarrow \mathrm{CH}_{2} \mathrm{OH}_{2}{ }^{2+}$	16.7		15.6	108	16.5
$\mathrm{CH}_{3} \mathrm{OH}^{{ }^{+}} \rightarrow \mathrm{CH}_{3} \mathrm{OH}^{2+}$	22.4	21.6			16.3
$\mathrm{CH}_{2} \mathrm{FH}^{++} \rightarrow \mathrm{CH}_{2} \mathrm{FH}^{2+}$	18.8		17.6	118	17.9
$\mathrm{CH}_{3} \mathrm{~F}^{++} \rightarrow \mathrm{CH}_{3} \mathrm{~F}^{2+}$	22.2	21.9			17.2
$\mathrm{CH}_{2} \mathrm{PH}_{3}{ }^{\circ+} \rightarrow \mathrm{CH}_{2} \mathrm{PH}_{3}{ }^{2+}$	15.9		15.6	29	
$\mathrm{CH}_{3} \mathrm{PH}_{2}{ }^{\circ+} \rightarrow \mathrm{CH}_{3} \mathrm{PH}_{2}{ }^{2+}$	17.1		16.2	81	
$\mathrm{CH}_{2} \mathrm{SH}_{2}{ }^{\circ+} \rightarrow \mathrm{CH}_{2} \mathrm{SH}_{2}{ }^{2+}$	15.7	15.4	15.5	23	19.8
$\mathrm{CH}_{3} \mathrm{SH}^{++} \rightarrow \mathrm{CH}_{3} \mathrm{SH}^{2+}$	18.8		18.1	75	20.2
$\mathrm{CH}_{2} \mathrm{Cl}^{++} \rightarrow \mathrm{CH}_{2} \mathrm{ClH}^{2+}$	17.2		16.1	112	17.5
$\mathrm{CH}_{3} \mathrm{Cl}^{++} \rightarrow \mathrm{CH}_{3} \mathrm{Cl}^{2+}$	21.5				18.2

${ }^{2}$ MP3/6-31G** values, with zero-point vibrational contribution where appropriate. ${ }^{b}$ From ref 9 b . ${ }^{c}$ Vertical ionization energies (eV), as calculated with the EOM approach (see text) and the $6-31 \mathrm{G}^{* *}$ basis set.
and vertical ionization energies calculated ${ }^{9 \mathrm{c}}$ for the fluorine and oxygen systems. It is of interest to make comparisons with the present theoretical predictions. Vertical and adiabatic ionization energies and calculated excess energies ($\Delta E=\mathrm{IE}_{\mathrm{v}}-\mathrm{IE}_{\mathrm{a}}$) obtained in the present study are presented in Table VII, together with the available experimental $Q_{\text {min }}$ values.

We can see immediately from Table VII that whereas the experimental $Q_{\text {min }}$ values are generally quite similar for $\mathrm{CH}_{2} \mathrm{XH}^{+}+$ and $\mathrm{CH}_{3} \mathrm{X}^{\bullet+}$ isomers (with $Q_{\text {min }}\left(\mathrm{CH}_{2} \mathrm{XH}^{++}\right)>Q_{\text {min }}\left(\mathrm{CH}_{3} \mathrm{X}^{\bullet+}\right)$ for first-row systems), the theoretical ionization energies for the two isomers are significantly different (with $\operatorname{IE}\left(\mathrm{CH}_{2} \mathrm{XH}^{++}\right)<$ $\mathrm{IE}\left(\mathrm{CH}_{3} \mathrm{X}^{\circ+}\right)$). Our results support the suggestion ${ }^{9 \mathrm{c}}$ that $\mathrm{CH}_{2} \mathrm{XH}^{2+}$ ions are formed from both $\mathrm{CH}_{2} \mathrm{XH}^{++}$and $\mathrm{CH}_{3} \mathrm{X}^{++}$in the charge-stripping experiments. A possible rationalization is that formation of $\mathrm{CH}_{2} \mathrm{XH}^{2+}$ dications from $\mathrm{CH}_{3} \mathrm{X}^{++}$arises through prior rearrangement of $\mathrm{CH}_{3} \mathrm{X}^{\bullet+}$ to give vibrationally excited $\mathrm{CH}_{2} \mathrm{XH}^{+}$radical cations. This would be consistent with the generally smaller values of $Q_{\text {min }}$ observed for $\mathrm{CH}_{3} \mathrm{X}^{++}$compared with $\mathrm{CH}_{2} \mathrm{XH}^{+}$.

Additional evidence that the $Q_{\text {min }}$ values obtained through charge-stripping of $\mathrm{CH}_{3} \mathrm{X}^{++}$ions do not correspond to formation of $\mathrm{CH}_{3} \mathrm{X}^{2+}$ dications comes from alternative procedures for calculating the energy for the vertical ionization process $\mathrm{CH}_{3} \mathrm{X}^{+}$ $\rightarrow \mathrm{CH}_{3} \mathrm{X}^{2+}$. In the first place, provided that the geometries of $\mathrm{CH}_{3} \mathrm{X}$ and $\mathrm{CH}_{3} \mathrm{X}^{++}$are similar, then the various single and double ionization energies are related by

$$
\begin{align*}
\mathrm{IE}_{\mathrm{v}}\left(\mathrm{CH}_{3} \mathrm{X}^{++} \rightarrow \mathrm{CH}_{3} \mathrm{X}^{2+}\right) \approx & \mathrm{IE}_{\mathrm{v}}\left(\mathrm{CH}_{3} \mathrm{X} \rightarrow \mathrm{CH}_{3} \mathrm{X}^{2+}\right)- \\
& \mathrm{IE}_{\mathrm{v}}\left(\mathrm{CH}_{3} \mathrm{X} \rightarrow \mathrm{CH}_{3} \mathrm{X}^{++}\right) \tag{2}
\end{align*}
$$

This allows values for the ionization process $\mathrm{CH}_{3} \mathrm{X}^{++} \rightarrow \mathrm{CH}_{3} \mathrm{X}^{2+}$ to be obtained from an independent set of experimental data. For example, the lowest double ionization energy of $\mathrm{CH}_{3} \mathrm{OH}$ ($\mathrm{IE}_{\gamma^{-}}$ $\left(\mathrm{CH}_{3} \mathrm{OH} \rightarrow \mathrm{CH}_{3} \mathrm{OH}^{2+}\right)$) has been measured ${ }^{49}$ in a double-charge-transfer experiment as $33.2 \pm 0.5 \mathrm{eV}$. Combining this with the literature ${ }^{50}$ value for $\mathrm{IE}_{\mathrm{v}}\left(\mathrm{CH}_{3} \mathrm{OH} \rightarrow \mathrm{CH}_{3} \mathrm{OH}^{++}\right)$of 10.90 eV leads to a vertical ionization energy for the process $\mathrm{CH}_{3} \mathrm{OH}^{+}+$ $\rightarrow \mathrm{CH}_{3} \mathrm{OH}^{2+}$ of 22.3 eV . This is close to the theoretically calculated value of 22.4 eV (Table VII) but differs significantly from the $Q_{\text {min }}$ value reported in the charge-stripping experiment.

In addition, the vertical ionization energies calculated by using the alternative equations-of-motion approach are quite close to those from the conventional calculations. For example, the EOM procedure leads to $\mathrm{IE}_{\mathrm{v}}\left(\mathrm{CH}_{3} \mathrm{OH}^{+} \rightarrow \mathrm{CH}_{3} \mathrm{OH}^{2+}\right)=21.6 \mathrm{eV}$ and $\mathrm{IE}_{\mathrm{v}}\left(\mathrm{CH}_{3} \mathrm{~F}^{\bullet+} \rightarrow \mathrm{CH}_{3} \mathrm{~F}^{2+}\right)=21.9 \mathrm{eV}$, results which are close to our directly calculated values of 22.4 and 22.2 eV , respectively (Table VII). Thus, both theory and experiment indicate that the

[^7]energies for the process $\mathrm{CH}_{3} \mathrm{X}^{++} \rightarrow \mathrm{CH}_{3} \mathrm{X}^{2+}$ are considerably higher than the $Q_{\text {min }}$ values obtained through charge stripping of $\mathrm{CH}_{3} \mathrm{X}^{+}$cations. ${ }^{\text {S1 }}$

Comparison of the experimental $Q_{\text {min }}$ values with the calculated ionization energies shows moderate (though by no means perfect) agreement for the ylide dications $\mathrm{CH}_{2} \mathrm{XH}^{2+}$ when $\mathrm{X}=\mathrm{OH}\left(Q_{\text {min }}\right.$ $\left.=16.5 \mathrm{eV}, \mathrm{IE}_{\mathrm{v}}=16.7 \mathrm{eV}, \mathrm{IE}_{\mathrm{a}}=15.6 \mathrm{eV}\right), \mathrm{X}=\mathrm{F}\left(Q_{\text {min }}=17.9\right.$ $\left.\mathrm{eV}, \mathrm{IE}_{\mathrm{v}}=18.8 \mathrm{eV} . \mathrm{IE}_{\mathrm{a}}=17.6 \mathrm{eV}\right)$, and $\mathrm{X}=\mathrm{Cl}\left(Q_{\text {min }}=17.5 \mathrm{eV}\right.$, $\left.\mathrm{IE}_{\mathrm{v}}=17.2 \mathrm{eV}, \mathrm{IE}=16.1 \mathrm{eV}\right)$. However, there are major discrepancies for $\mathrm{X}=\mathrm{NH}_{2}\left(Q_{\min }=18.9 \mathrm{eV}, \mathrm{IE}_{\mathrm{v}}=16.2 \mathrm{eV}, \mathrm{IE}_{\mathrm{a}}=\right.$ $15.9 \mathrm{eV})$ and $\mathrm{X}=\mathrm{SH}\left(Q_{\text {min }}=19.8 \mathrm{eV}, \mathrm{IE}_{\mathrm{v}}=15.7 \mathrm{eV}, \mathrm{IE}_{\mathrm{a}}=15.5\right.$ eV). The theoretical values in these two instances are supported by EOM calculations and by higher level conventional calculations. Thus, for $\mathrm{X}=\mathrm{NH}_{2}$ the calculated IE_{v} values are 16.2 (MP3/631G**), 16.2 (MP4/6-31G**), 15.8 (EOM/6-31G**), and 16.3 $\mathrm{eV}\left(\mathrm{MP} 3 / 6-311 \mathrm{G}^{* *}\right)^{52}$ compared with the experimental $Q_{\text {min }}$ of 18.9 eV , while for $\mathrm{X}=\mathrm{SH}$ the calculated IE_{v} values are 15.7 (MP3/6-31G**) and 15.4 eV (EOM/6-31G**) compared with the experimental $Q_{\text {min }}$ value of 19.8 eV . The disagreement between theory and experiment is sufficiently large that reinterpretation of the experimental data could be in order.

Finally, we note that the significant differences between IE_{v} and IE_{a} values for a number of systems $\left(\mathrm{X}=\mathrm{OH}, \mathrm{F}, \mathrm{PH}_{2}\right.$, and
(51) Further information on the stabilities and lifetimes of the $\mathrm{CH}_{3} \mathrm{X}^{2+}$ species might be obtained from state of the art photoionization or Auger spectroscopy experiments.
(52) The 6-311G** basis set is described in: Krishnan, R.; Binkley, J. S.; Seeger, R.; Pople, J. A. J. Chem. Phys. 1980, 72, 650.
$\mathrm{Cl})$ reflect a marked difference between the geometry of the ylidion ($\mathrm{CH}_{2} \mathrm{XH}^{+}$) and the ylide dication $\left(\mathrm{CH}_{2} \mathrm{XH}^{2+}\right)$ in these cases. This effect would not, however, account for the discrepancy noted above between the theoretical and experimental ionization energies.

Concluding Remarks

Ylide dications ($\mathrm{CH}_{2} \mathrm{XH}^{2+}$), although thermodynamically unstable with respect to fragmentation products, are found to lie in moderately deep potential wells and should be observable species. In contrast, their conventional isomers $\left(\mathrm{CH}_{3} \mathrm{X}^{2+}\right)$ can rearrange or fragment with little or no barrier. The calculated ionization energies corresponding to production of ylide dications from ylidions are generally in moderate agreement with experimental $Q_{\text {min }}$ values. However, there are a number of discrepancies, and a reexamination of the experimental data is suggested in these cases. The calculations indicate that production of $\mathrm{CH}_{3} \mathrm{X}^{2+}$ dications from $\mathrm{CH}_{3} \mathrm{X}^{\circ+}$ is a high-energy process, and the experimental $Q_{\text {min }}$ values for such systems are likely to correspond to production of the isomeric $\mathrm{CH}_{2} \mathrm{XH}^{2+}$ dications.

Registry No. $\mathrm{CH}_{2} \mathrm{NH}_{3}{ }^{2+}$, 103884-69-1; $\mathrm{CH}_{3} \mathrm{NH}_{2}{ }^{2+}$, 103958-76-5; $\mathrm{CH}_{2} \mathrm{OH}_{2}{ }^{2+}, 83584-97-8 ; \mathrm{CH}_{3} \mathrm{OH}^{2+}, 99674-12-1 ; \mathrm{CH}_{2} \mathrm{FH}^{2+}, 103751-46-$ 8; $\mathrm{CH}_{2} \mathrm{~F}^{2+}, 103958-74-3 ; \mathrm{CH}_{2} \mathrm{PH}_{3}{ }^{2+}, 103884-70-4 ; \mathrm{CH}_{3} \mathrm{PH}_{2}{ }^{2+}, 103958-$ $77-6 ; \mathrm{CH}_{2} \mathrm{SH}_{2}{ }^{2+}, 103884-71-5 ; \mathrm{CH}_{3} \mathrm{SH}^{2+}, 103958-75-4 ; \mathrm{CH}_{2} \mathrm{ClH}^{2+}$, 103884-72-6; $\mathrm{CH}_{3} \mathrm{Cl}^{2+}, 103958-73-2 ; \mathrm{Ph}_{2}{ }^{+}, 12339-26-3 ; \mathrm{Ph}_{3}{ }^{+}$, 29724-$05-8 ; \mathrm{CH}_{2} \mathrm{PH}_{2}{ }^{+}, 59025-96-6 ; \mathrm{HCPH}_{2}{ }^{++}, 98077-14-6 ; \mathrm{CH}_{2} \mathrm{PH}^{++}, 89387-$ $22-4 ; \mathrm{SH}^{+}, 12273-42-6 ; \mathrm{SH}_{2}{ }^{+}, 77544-69-5 ; \mathrm{CH}_{2} \mathrm{SH}^{+}, 54043-03-7$; HCSH^{+}, 61356-81-8; $\mathrm{Cl}^{+}, 24203-47-2 ; \mathrm{ClH}^{\bullet+}, 12258-94-5 ; \mathrm{CH}_{2} \mathrm{Cl}^{+}$, $59000-00-9 ; \mathrm{HCCl}^{+}, 89877-51-0 ; \mathrm{HCCl}_{2}{ }^{+}, 103904-09-2 ; \mathrm{CH}_{2}{ }^{+}, 15091-$ 72-2; $\mathrm{H}_{2}, 1333-74-0 ; \mathrm{H}_{2}{ }^{++}$, 12184-90-6; $\mathrm{CH}_{3}{ }^{+}$, 14531-53-4.

A MCSCF Study of Homoaromaticity and the Role of Ion Pairing in the Stabilization of Carbanions

Roland Lindh, ${ }^{*}{ }^{\dagger}$ Björn O. Roos, ${ }^{\dagger}$ Göran Jonsäll, ${ }^{\ddagger}$ and Per Ahlberg* ${ }^{*}$
Contribution from the Department of Theoretical Chemistry, University of Lund, Chemical Centre, S-221 00 Lund, Sweden, and the Department of Organic Chemistry, University of Göteborg, S-412 96 Göteborg, Sweden. Received March 17, 1986

Abstract

The bicyclo[3.2.1] octa-3,6-dien-2-yl anion (I), the anion I lithium cation complex, the allyl anion (X), the allyl radical, the allyl anion lithium cation complex, the ethene molecule, and the ethene lithium cation complex have been studied by means of multiconfigurational SCF (MCSCF) and analytical gradients. The calculations have been confined to minimal and split-valence basis sets. The large distance between the C_{2} olefinic bridge and the C_{3} carbanionic bridge of anion I and the short $\mathrm{C}_{6}-\mathrm{C}_{7}$ bond distance imply bishomoaromaticity to be negligible. According to these results, homoaromaticity is not responsible for the observed stability in many potentially homoaromatic carbanions. The stability of anion I in the gas phase is instead explained in terms of a simple electrostatic model, where the quadrupole moment in the C_{2} olefinic bridge stabilizes the charge in the C_{3} carbanionic bridge. This model agrees quantitatively with experiment. Calculations on the anion I lithium cation complex showed that in solution an additional attractive interaction between the C_{2} olefinic bridge and the lithium cation can contribute. This additional interaction is estimated to stabilize the carbanion-lithium ion pair in the gas phase by about $16 \mathrm{kcal} / \mathrm{mol}$. However, the stabilizing interactions of anion I in solution (quadrupole-charge and counterion-anion interactions) will be reduced by solvent shielding. The relative ratios of the different stabilizing interactions are therefore difficult to estimate. The geometrical findings of this paper have been verified by a recent X-ray experiment.

The concept of homoaromaticity has been controversial since it was introduced by Winstein almost 30 years ago. ${ }^{1}$ Although homoaromatic stabilization of carbocations is well established, ${ }^{2}$ more recent work concludes that homoaromaticity is not expected to be of importance in carbanions and neutral compounds, including radicals. ${ }^{3}$ This conclusion about carbanions is based upon

[^8]theoretical studies of the prototype of bishomoaromatic anions, i.e., the bicyclo[3.2.1]octa-3,6-dien-2-yl anion (I), ${ }^{4}$ and other

[^9]
[^0]: (1) Presented in part at the Seventh IUPAC Conference on Physical Organic Chemistry, Auckland, New Zealand, Aug. 1984.
 (2) Present address; CSIRO Division of Atmospheric Research, Aspendale, Victoria, Australia.
 (3) See, for example: (a) Mitchell, D. J.; Wolfe, S.; Schlegel, H. B. Can. J. Chem. 1981, 59, 3280. (b) Pople, J. A.; Raghavachari, K.; Frisch, M. J.; Binkley, J. S.; Schleyer, P. v. R. J. Am. Chem. Soc. 1983, 105, 6389. (c) Dixon, D. A.; Dunning, T. H.; Eades, R. A.; Gassman, P. G. J. Am. Chem. Soc. 1983, 105, 7011.
 (4) For an excellent review of ylide chemistry, see: Morris, D. G. Surv. Prog. Chem. 1983, 10, 189.
 (5) For recent reviews dealing with ylidions, see: (a) Radom, L.; Bouma, W. J.; Nobes, R. H.; Yates, B. F. Pure Appl. Chem. 1984, 56, 1831. (b) Schwarz, H. Shitsuryo Bunseki 1984, 32, 3.
 (6) Defined in: (a) Yates, B. F.; Bouma, W. J.; Radom, L. J. Am. Chem. Soc. 1984, 106, 5805. For a comprehensive bibliography, see: (b) Yates, B. F.; Bouma, W. J.; Radom, L. Tetrahedron, in press. Recent references include: (c) Wesdemiotis, C.; Danis, P. O.; Feng, R.; Tso, J.; McLafferty, F. W. J. Am. Chem. Soc. 1985, 107, 8059. (d) Burgers, P. C.; Holmes, J. L.; Terlouw, J. K.; van Baar, B. Org. Mass Spectrom. 1985, 20, 202. (e) Hammerum, S.; Ingemann, S.; Nibbering, N. Org. Mass Spectrom. 1985, 20, 314. (f) Sack, T. M.; Cerny, R. L.; Gross, M. L. J. Am. Chem. Soc. 1985, 107, 4562.
 (7) (a) Bouma, W. J.; Nobes, R. H.; Radom, L. J. Am. Chem. Soc. 1982, 104, 2929. (b) Bouma, W. J.; MacLeod, J. K.; Radom, L. J. Am. Chem. Soc. 1982, 104, 2930. (c) Holmes, J. L.; Lossing, F. P.; Terlouw, J. K.; Burgers, P. C. J. Am. Chem. Soc, 1982, 104, 2931. (d) Yates, B. F.; Bouma, W. J.; Radom, L. J. Am. Chem. Soc., in press.
 (8) Bouma, W. J.; Radom, L. J. Am. Chem. Soc. 1983, 105, 5484.
 (9) (a) Holmes, J. L.; Lossing, F. P.; Terlouw, J. K.; Burgers, P. C. J. Am. Chem. Soc. 1982, 104, 2931. (b) Holmes, J. L.; Lossing, F. P.; Terlouw, J. K.; Burgers, P. C. Can. J. Chem. 1983, 61, 2305. (c) Maquin, F.; Stahl, D.; Sawaryn, A.; Schleyer, P. v. R.; Koch, W.; Frenking, G.; Schwarz, H. J. Chem. Soc., Chem. Commun. 1984, 504.
 (10) We note that an extension of the first-row substituents to include X $=\mathrm{CH}_{3}$ would give rise to the $\mathrm{C}_{2} \mathrm{H}_{6}{ }^{2+}$ species, for which it is well established that the global minumum corresponds to an ylide dication with a $\mathrm{CH}_{2} \mathrm{CH}_{4}{ }^{2+}$ structure. See: (a) Schleyer, P. v. R.; Kos, A. J.; Pople, J. A.; Bala ban, A. T. J. Am. Chem. Soc. 1982, 104, 3771 . (b) Lammertsma, K.; Olah, G. A.; Barzaghi, M.; Simonetta, M. J. Am. Chem. Soc. 1982, 104, 6851.

[^1]: (19) Binkley, J. S.; Whiteside, R. A.; Krishnan, R.; Seeger, R.; DeFrees, D. J.; Schlegel, H. B.; Topiol, S.; Kahn, L. R.; Pople, J. A. QCPE 1981, 13, 406.
 (20) Binkley, J. S.; Frisch, M. J.; DeFrees, D. J.; Raghavachari, K.; Whiteside, R. A.; Schlegel, H. B.; Fluder, E. M.; Pople, J. A., CarnegieMellon University, Pittsburgh, PA 15213.
 (21) (a) Binkley, J. S.; Pople, J. A.; Hehre, W. J. J. Am. Chem. Soc. 1980, 102, 939. (b) Pietro, W. J.; Francl, M. M.; Hehre, W. J.; DeFrees, D. J.; Pople, J. A.; Binkley, J. S. J. Am. Chem. Soc. 1982, 104, 5039.
 (22) (a) Hariharan, P. C.; Pople, J. A. Theor. Chim. Acta 1973, 28, 213. (b) Gordon, M. S.; Binkley, J. S.; Pople, J. A.; Pietro, W. J.; Hehre, W. J. J. Am. Chem. Soc. 1982, 104, 2797. (c) Francl, M. M.; Pietro, W. J.; Hehre, W. J.; Binkley, J. S.; Gordon, M. S.; DeFrees, D. J.; Pople, J. A. J. Chem. Phys. 1982, 77, 3654.
 (23) (a) Moller, C.; Plesset, M. S. Phys. Rev. 1934, 46, 618. (b) Pople, J. A.; Binkley, J. S.; Seeger, R. Int. J. Quantum Chem. Symp. 1976, 10, 1.

[^2]: ${ }^{a}$ Based on the total energies in Table I. ${ }^{b}$ With zero-point correction (see text).

[^3]: (31) Paddon-Row, M. N.; Santiago, C.; Houk, K. N. J. Am. Chem. Soc. 1980, 102, 6561.
 (32) Lammertsma, K. J. Am. Chem. Soc. 1984, 106, 4619.

[^4]: (42) For an illuminating discussion, see: Kutzelnigg, W. Angew. Chem., Int. Ed. Engl. 1984, 23, 272.
 (43) For example, the calculated energy difference between $\mathrm{F}^{+}\left({ }^{1} \mathrm{D}\right)$ and $\mathrm{F}^{+}\left({ }^{3} \mathrm{P}\right)$ is $356 \mathrm{~kJ} \mathrm{~mol}^{-1}$ at MP3/6-31G*** in favor of the triplet.

[^5]: (44) (a) Collins, J. B.; Schleyer, P. v. R.; Binkley, J. S.; Pople, J. A. J. Am. Chem. Soc. 1976, 98, 3436. (b) Pople, J. A.; Tidor, B.; Schleyer, P. v. R Chem. Phys. Lett. 1982, 88, 533. (c) Siegbahn, P. E. M. Chem. Phys. 1982, 66, 443.

[^6]: (45) (a) Rosenstock, H. M.; Draxl, K.; Steiner, B. W.; Herron, J. T. J. Phys. Chem. Ref. Data, Suppl. 1977, 6. (b) Butler, J. J.; Baer, T.; Evans, S. A. J. Am. Chem. Soc. 1983, 105, 3451. (c) Martin, R. H.; Lampe, F. W.; Taft, R. W. J. Am. Chem. Soc. 1966, 88, 1353
 (46) Pople, J. A.; Frisch, M. J.; Luke, B. T.; Binkley, J. S. Int. J. Quantum Chem. Symp. 1983, 17, 307.
 (47) (a) Krishnan, R.; Pople, J. A. Int. J. Quantum Chem. 1978, 14, 91 (b) Krishnan, R.; Frisch, M. J.; Pople, J. A. J. Chem. Phys. 1980, 72, 4244 (48) An intense charge-stripping peak was observed, ${ }^{90}$ however, in the spectrum of $\mathrm{CH}_{3} \mathrm{SH}^{++}$.

[^7]: (49) Appell, J.; Durup, J.; Fehsenfeld, F. C.; Fournier, P. J. Phys. B 1974, 7, 406.
 (50) Levin, R. D.; Lias, S. G. Ionization Potential and Appearance Potential Measurements 1971-1981; U.S. Government Printing Office: Washington, DC, 1982

[^8]: ${ }^{\dagger}$ University of Lund
 ${ }^{t}$ University of Göteborg

[^9]: (1) (a) Applequist, D. E.; Roberts, J. D. J. Am. Chem. Soc. 1956, 78, 4012. (b) Winstein, S. J. Am. Chem. Soc. 1959, 81, 6524. For reviews, see: (c) Winstein, S. Q. Rev., Chem. Soc. 1969, 23, 141 . Winstein, S. Spec. Publ.Chem. Soc. 1967, 21, 5. (d) Winstein, S. Carbonium Ions; Olah, G. A., Schleyer, P. v. R., Eds.; Wiley: New York, 1972; Vol. 3, Chapter 22, p 965. (e) Paquette, L. A. Angew. Chem., Int. Ed. Engl. 1978, 17, 106. (f) Warner, P. M. Top. Nonbenzenoid Aromat. Chem. 1976, 2.

